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a b s t r a c t

Uncertainty analysis methodologies represent an important tool in the field of reactor physics with appli-
cations which span from the design phase to the safety analysis, as a support to ‘‘best estimate’’ models. A
major source of uncertainty in reactor simulations is the input data set of the problem which is propa-
gated, throughout the model, to the final simulation output. In this paper we perform such a propagation
for a nonlinear point-kinetic model coupled to a lumped parameters system using a spectral technique,
based on the Polynomial Chaos Expansion (PCE). We present two different ways to implement this tech-
nique, together with an overview of standard methods, and we apply them to a positive reactivity inser-
tion transient. We show that for low-dimensional coupled problems PCE methods achieve the precision
of Monte Carlo approaches at a significantly reduced computational cost.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The role of uncertainty analysis in nuclear reactor simulations is
becoming increasingly important and challenging as their size and
precision is constantly increasing. Moreover, regulations used in
reactor licensing have begun to allow the ‘‘best estimate plus
uncertainty’’ simulations approach, increasing the need for reliable
and precise uncertainty analysis methodologies (NEA, 2008). There
are different kinds of uncertainties to deal with, some of which are
represented by approximations introduced by the model or by the
numerical scheme used to solve it, however, one of the most
important challenges in Uncertainty Analysis (UA) is to handle
the uncertainty present in the input data of the problem (like the
material properties or the geometric descriptions).

This corresponds to estimating how the lack of knowledge in
the input data set influences the simulation outputs used in design
and safety analysis. Many techniques have been implemented and
used in the field so far, the main methods being statistical and
deterministic. The main distinction between the two is that statis-
tical methods are exact and require a large computational effort
while deterministic methods rely on model approximations which
make the technique faster compared to the first approach. A
common way to propagate uncertainties using a deterministic
approach is the application of first order perturbation techniques
based on adjoint formulations. The computational effort required

to perform this propagation is relatively small and the accuracy
in the prediction of the output uncertainty for small perturbations
is good even for nonlinear problems (Cacuci, 2003).

Unfortunately within a safety analysis framework we are in
presence of strong nonlinearities, and large (possibly) non-Gaussian
input uncertainties often in range where the linear approximation
introduced by perturbation methods would not hold anymore. In
this paper we present the application of spectral techniques, based
on the Polynomial Chaos Expansion introduced by Wiener (1938),
to a coupled time-dependent model in order to propose an alterna-
tive to standard methodologies. PCE based techniques were first
proposed by Ghanem and Spanos (1991) and have been applied so
far to different scientific fields, ranging from Computational Fluid
Dynamics problems (Najm, 2009; Mathelin et al., 2005) to structural
mechanics (Ghanem and Spanos, 1997).

Two main PCE approaches, categorized as intrusive and non-
intrusive, can be used to implement these spectral techniques. As
the name suggests the main difference between the approaches
is that with the former it is possible to use the original code as a
‘‘black box’’ while the latter involves the definition of a newly cou-
pled problem which needs to be coded and solved. Within the reac-
tor physics field the application of an intrusive PCE approach was
first presented for a neutron diffusion problem by Williams
(2007) and later applied to the transport equation in two studies
(Williams, 2006; Eaton and Williams, 2010) for fixed source and
eigenvalue problems. This concept has been also extended to
spatially random problems and to non-intrusive methods by Fichtl
(2009) while Roderick et al. (2010) presented the application of a
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PCE based regression technique to a coupled steady-state problem.
Regarding time-dependent problems the only application in the
nuclear field was proposed by Hagues et al. (2010) where an intru-
sive stochastic method is applied to a radionuclide dispersion mod-
el. No application to time-dependent nonlinear problems has been
presented so far.

In the present work we apply two PCE techniques, the Non-
intrusive Spectral Projection (NISP) and the Stochastic Galerkin
(SG) formulation, to a coupled time-dependent problem described
using a Point-Kinetics/Lumped-Parameters model. The implemen-
tation and the performance of the two techniques are discussed
and compared to standard methodologies. The paper is structured
as follows: first the model used to simplify the coupled physical
problem is introduced, then an overview of the traditional UA tech-
niques, together with an introduction to the two main methods to
implement the PCE are presented. In the final part the results of the
application of these techniques to a coupled time-dependent prob-
lem, describing a reactivity insertion transient, are discussed and
compared.

2. Derivation of the coupled time-dependent problem

The problem considered for the application of the Uncertainty
Quantification techniques introduced in the previous section is de-
scribed by a system of a coupled Ordinary Differential Equations
(ODE) modeling the time-dependent behavior of a simplified reac-
tor. The model is derived using a point-kinetic approximation for
the neutron population (Duderstadt and Hamilton, 1976) together
with a lumped parameter description of the reactor temperatures.
These assumptions allow the elimination of the spatial dependen-
cies and therefore focus on the time-dependent part. The point-ki-
netic system is

dP
dt
¼ qðTf ; Tc; tÞ � b

K
P þ

X6

k¼1

kkCk

dCk

dt
¼ �kkCk þ

bk

K
P

ð1Þ

where P is the reactor power, K the mean generation time, Ck the
concentration of the kth precursor group, bk and kk the delayed
neutrons fraction and the decay constant for the kth precursor
group and b the total delayed neutrons fraction. The thermo-kinet-
ics/thermal–hydraulics equations, needed to describe the removal
of the heat by the coolant, are approximated using a lumped param-
eter model, i.e. averaging the unknown values over the whole do-
main. Assuming the reactor is divided into a fuel and a coolant
region, their time-dependent average temperatures are described
by the equations

Mf cpf
dTf

dt
¼ P þ AhðTc � Tf Þ

Mccpc
dTc

dt
þ v Tc � Tin

L

� �
¼ AhðTf � TcÞ

where Mf and Mc are the fuel and coolant mass respectively, h the
heat transfer coefficient, A the heat transfer surface, v the coolant
flow velocity, L the channel length and Tin the inlet temperature
of the coolant. The coupling between these two equations is given
by the presence of the power production term P and by the time-
dependent reactivity q(t) in the point kinetic equation, defined as
the contribution of three different terms

qðtÞ ¼ qext þ aD½Tf � Tf ð0Þ� þ ac½Tc � Tcð0Þ�

where qext represents an external reactivity insertion, aD and ac are
the Doppler and the coolant reactivity coefficients respectively, and
Tf(0) and Tc(0) are the initial system temperatures. We assume that
the system starts from the following initial conditions

Pð0Þ ¼ P0

Ckð0Þ ¼
bk

kkK
P0

Tf ð0Þ ¼ Tcð0Þ þ
P0

Ah

Tcð0Þ ¼ Tin þ
P0L

Mccpcv

In order to present the different techniques that can be used to per-
form UA of the system hitherto discussed, it is useful to reformulate
it using a more generic formulation. We reformulate the model as a
generic system of ODEs defined as

du
dt
¼ Lða;uÞ

uð0Þ ¼ U0

ð2Þ

where L is a nonlinear operator, u the unknown solution of the
problem, and a the set of input parameters. In general, one may
not only be interested in the solution of the previous system but
also in a response R (a,u,t) which can be described as a functional
of the solution and the input parameter set. The first step required
to propagate uncertainties throughout the model is the introduction
of a random space h = [h1, . . . ,hN] which can be used to describe the
stochastic component of the input parameter set, h1, . . . ,hN are inde-
pendent random variables used to model the random input data
a(h). The introduction of this uncertainty in the input data set turns
the deterministic output of the model (represented by the unknown
system parameters and by the response) into a stochastic one, with
the output quantities u(h) and R (h) depending on the same random
variable set.

The propagation of uncertainties involves the determination of
this dependency of the system outputs on the random space h.
Many methodologies can be applied to perform the task, in the
next section a brief description of the two main approaches, Monte
Carlo and Sensitivity Analysis, is given together with the introduc-
tion of the two main Polynomial Chaos Expansion techniques.

2.1. Standard uncertainty analysis methodologies

In this section we briefly describe the two main methodologies
used in the reactor physics domain to perform UA, in order to com-
pare them to the alternative spectral methods, which are as
follows.

2.1.1. Monte Carlo (MC) methods
The main concept behind the Monte Carlo approach is quite

straightforward: the random input data set is sampled M times un-
til the statistical moments of the simulation output converge. The
unbiased definition for the mean of a response R is

EðRÞ ¼ 1
M

XM

i¼1

RðhiÞ

where hi is a single realization of the random input set. The unbi-
ased variance is expressed by the equation

r2ðRÞ ¼ 1
M � 1

XM

i¼1

RðhiÞ � EðRÞ
� �2

the statistical error associated with these moments is proportional to
(1/M)1/2. MC methods are relatively easy to implement and they do
not require any modification of the original code used to calculate
the output quantities. The use of the original mathematical model
to calculate the statistical moments allows the consideration of
physical phenomena that would be neglected using approximated
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