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a  b  s  t  r  a  c  t

Many  practical  chemical  engineering  problems  involve  the  determination  of optimal  trajectories  given
multiple  and  conflicting  objectives.  These  conflicting  objectives  typically  give rise to  a  set  of  Pareto
optimal  solutions.  To  enhance  real-time  decision  making  efficient  approaches  are required  for  deter-
mining  the  Pareto  set in  a fast  and  accurate  way.  Hereto,  the  current  paper  illustrates  the  use  of the
freely  available  toolkit  ACADO  Multi-Objective  (www.acadotoolkit.org) on  several  chemical  examples.
The  rationale  behind  ACADO  Multi-Objective  is  the  integration  of  direct  optimal  control  methods  with
scalarisation-based  multi-objective  methods  enabling  the  exploitation  of fast  deterministic  gradient-
based  optimisation  routines.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In practical chemical optimal control problems, multiple and
conflicting objectives are often present. This gives rise to a set of
Pareto optimal solutions instead of one single solution (Miettinen,
1999). The most often exploited approaches to generate this Pareto
set are (i) the Weighted Sum (WS) of the individual objectives or
(ii) stochastic genetic algorithms (Deb, 2001). In the former case,
a number of single-objective optimal control problems are solved
for a grid of different weights using deterministic optimisation
routines. In the latter case, a population of candidate solutions is
updated based on repeated cost computations such that this popu-
lation gradually evolves to the Pareto frontier. Unfortunately, both
approaches exhibit certain restrictions. For the Weighted Sum it
is known that (i) an equal distribution of weights does not neces-
sarily lead to an even spread along the Pareto front, and that (ii)
points in a non-convex part of the Pareto front cannot be obtained
(Das & Dennis, 1997).  Stochastic approaches, although quite suc-
cessful over the years (see, e.g., Bhaskar, Gupta, & Ray, 2000; Mitra,
Majumdar, & Raha, 2004; Silva & Biscaia, 2003 and the references
therein), (i) may  become time consuming due to the repeated
model simulations required, (ii) are less suited to incorporate con-
straints exactly, and (iii) are limited to rather low dimensional
search spaces. This last aspect restricts the control discretisations
to coarse approximations.
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To mitigate these drawbacks, several novel scalarisation-based
multi-objective techniques, i.e., Normal Boundary Intersection
(NBI) (Das & Dennis, 1998),  Normalised Normal Constraint (NNC)
(Messac, Ismail-Yahaya, & Mattson, 2003; Messac & Mattson, 2004)
and Enhanced Normalised Normal Constraint (ENNC) have been
integrated with direct optimal control techniques (Abo-Ghander
et al. 2010; Logist, Van Erdeghem, & Van Impe, 2009).  In addition,
these techniques have been implemented in the freely available
ACADO Multi-Objective toolkit (Logist, Houska, Diehl, & Van Impe,
2010). The rationale is that this integration overcomes the disad-
vantages of the Weighted Sum, while still allowing the exploitation
of fast deterministic solvers. Hence, the aim of this paper is to illus-
trate the usefulness of ACACO Multi-Objective as a tool to facilitate
real-time decision making for dynamic chemical processes. To this
end, several case-studies are presented, starting from a concep-
tual problem and adding gradually more complexity. Moreover,
to the best of the authors’ knowledge, ACADO Multi-Objective is
one of the first optimal control packages that provides systematic
multi-objective optimisation features.

2. Problem formulation

In general, a multiple objective optimal control problem can be
formulated as follows.

min
x(�),u(�),p,�f

{J1, . . . , Jm} (1)

subject to:

dx
d�

= f(x(�), u(�), p, �) � ∈ [0,  �f], (2)
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0 = bc(x(0), x(�f), p), (3)

0 ≥ cp(x(�), u(�), p, �), (4)

0 ≥ ct(x(�f), u(�f), p, �f). (5)

Here, x are the state variables. u are the control variables and p
denote the parameters to be optimised. The vector f represents the
dynamic system equations (on the interval � ∈ [0, �f]) with initial
and terminal boundary conditions given by the vector bc. The vec-
tors cp and ct indicate respectively path and terminal inequality
constraints on the states and controls. Each individual objective
function can consist of both Mayer and Lagrange terms.

Ji = hi(x(�f), p, �f) +
∫ �f

0

gi(x(�), u(�), p, �)d�. (6)

The admissible set S is defined to be the set of feasible points
y = (x(·), u(·), p, �f) that satisfy the dynamic equation as well as
the boundary, path and terminal constraints in the above multi-
objective optimal control problem.

In multi-objective optimisation, typically no single optimal solu-
tion exists, but a set of Pareto optimal solutions must be obtained.

A point ya ∈ S is Pareto optimal if and only if there is no other point
yb ∈ S with Ji(yb) ≤ Ji(ya) for all i ∈ {1, . . .,  m}  and Jj(yb) < Jj(ya) for at
least one j ∈ {1, . . .,  m}.

Broadly speaking, a solution is called Pareto optimal if there
exists no other feasible solution that improves one objective func-
tion without worsening another.

3. ACADO Multi-Objective

ACADO Multi-Objective extends the ACADO toolkit for auto-
matic control and dynamic optimisation (Houska, Ferreau, & Diehl,
2011) with several multi-objective approaches. Due to the self-
contained object-oriented, C++implementation, the toolkit (i) is
easy-to-use, (ii) does not require third-party software, and (iii)
allows a flexible control over algorithmic settings.

The idea behind ACADO Multi-Objective is the integration of
efficient multi-objective scalarisation techniques with fast deter-
ministic direct optimal control approaches (Logist, Houska, et al.,
2010). Scalarisation methods convert the original multi-objective
optimisation problem into a (series of) parametric single-objective
optimisation problem whose solution each time yields one point
of the Pareto set. By consistently varying the method’s parame-
ter(s) (often referred to as weights) an approximation of the Pareto
set is obtained. Despite its intrinsic drawbacks, combining the dif-
ferent objectives into a convex Weighted Sum (WS) is still one of
the most popular scalarisation methods. NBI and NNC are alterna-
tive approaches that mitigate the WS  drawbacks. Direct optimal
control approaches transform the original infinite dimensional
optimal control problem via discretisation into a finite dimensional
Non-Linear Program (NLP). Sequential strategies (e.g., Single Shoot-
ing (SiS)) discretise only the controls, leading to small but dense
NLPs. In contrast, simultaneous approaches (e.g., Multiple Shoot-
ing (MuS) and Orthogonal Collocation) discretise both the controls
and states, resulting in large but structured NLPs. The NLPs can
be solved efficiently by deterministic optimisation routines, which
exploit the sparsity.

A number of optimal control packages exist, e.g., (i) com-
mercial software as gPROMS (Process System Enterprise Limited,
2010) and PROPT (Tomlab Optimization Inc, 2010) and (ii) non-
commercial codes as DynoPC (Lang & Biegler, 2007),  MUSCOD-II
(Leineweber, Bauer, Bock, & Schlöder, 2003; Leineweber, Schäfer,
Bock, & Schlöder, 2003),  DyOS (Schlegel, Stockmann, Binder, &
Marquardt, 2005) and DOTcvpSB (Hirmajer, Balsa-Canto, & Banga,
2009). However, it should be noted that none of these pack-
ages offer systematic and advanced multi-objective features. Fig. 1

Fig. 1. Schematic overview of ACADO Multi-Objective.

shows the structure of ACADO Multi-Objective. Its features are the
following.

• Multiple objective optimisation methods. Four scalarisation
methods have been implemented: Weighted Sum, Normal
Boundary Intersection, Normalised Normal Constraint and
Enhanced Normalised Normal Constraint. The implementation
is generic such that, in principle, problems with any number of
objectives can be tackled.
- Weighted Sum (WS). The convex Weighted Sum of the individ-

ual objectives is still most often used in practice:

min
y∈S

JWS =
m∑

i=1

wiJi(y), (7)

with a scalarisation parameter or weight vector w =
[w1, w2, . . . , wm]� ∈ R

m+ (with
∑m

i=1wi = 1). However, it
exhibits as drawbacks that (i) the returned solutions strongly
depend on the scale and scaling of the objectives, (ii) a uniform
variation of the weights does not necessarily result in an even
spread on the Pareto set and (iii) points in non-convex regions
of the Pareto set cannot be obtained (Das & Dennis, 1997).

- Normal Boundary Intersection (NBI). NBI (Das & Dennis, 1998)
has been developed based on geometrically intuitive arguments
in order to overcome the deficiencies of the WS.  The multi-
objective optimisation problem is reformulated as follows:

max
y∈S,l∈R

l (8)

s.t. : J∗ + ˚w − l˚e = J(y), (9)

with J∗ = [J∗1, J∗2, . . . , J∗m]� the utopia point which contains the
minima of the individual objective functions Ji(y∗

i
), and  ̊ the

pay-off matrix. In this matrix the ith column contains the vector
J(y∗

i
) − J∗. Similar to the WS,  the vector w represents the scalar-

isation parameters. The rationale behind NBI is to maximise
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