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An efficient response-based solution to the time-dependent neutron transport equation in a semi-infinite
slab is derived. The solution is based on polynomial expansions of the source terms and neutron flux in
the time domain. The expansion coefficients of the flux solution are computed in terms of response func-
tions, which are special cases of Green'’s functions for arbitrary in-volume and surface sources. The result-
ing response equation, which is a convolution integral equation in time, is reduced to a linear algebraic
system of equations in the expansion coefficients. Two example problems are solved using the response-
based method, and the extension of the method to general (finite, heterogeneous) problems is discussed.

© 2010 Published by Elsevier Ltd.

1. Introduction

Time-dependent neutron transport theory has evolved more
slowly than its steady-state counterpart. This is partially because
of the additional complexity incurred by adding the time dimen-
sion to the space, angle and energy variables. Additionally, realistic
treatment of neutron transport in reactor systems necessitates
including delayed neutrons that introduce multiple time scales to
the transport solution. As a result, most modern transient analysis
tools rely on approximations that simplify either the reactor phys-
ics or geometry. Two of the most widely adopted approaches are
the point kinetics model (including the adiabatic and quasistatic
approximations) (Ott and Meneley, 1969; Bell and Glasstone,
1979; Goluoglu and Dodds, 2001; Dulla et al., 2008) and nodal dif-
fusion theory (Lawrence and Dorning, 1979; Alchalabi et al., 1993;
Sutton and Aviles, 1996; Downar et al., 2004). The former approx-
imates the transport solution by limiting the spatial variation of
the flux distribution while the latter simplifies the reactor geome-
try by homogenizing large subregions of the reactor volume. As
computing power has increased there has also been a trend to-
wards a direct solution of the transport equation by traditional
space-time discretization methods (Hill, 1976; Oliveira and
Goddard, 1996; Pautz and Birkhofer, 2003). This approach, how-
ever, requires significant computational speed and memory to be
feasible for large reactor systems. This paper introduces a novel
time-dependent methodology for neutron transport for reactor
physics applications that is both efficient and accurate.

The methodology employs a generalized approach based on
response functions (Forget and Rahnema, 2006a; Mosher and

* Corresponding author.
E-mail address: farzad@gatech.edu (F. Rahnema).

0306-4549/$ - see front matter © 2010 Published by Elsevier Ltd.
doi:10.1016/j.anucene.2010.03.010

Rahnema, 2006). Response functions characterize the time-depen-
dent neutronic response of a system subjected to arbitrary incident
and in-volume source terms. A response, in this context, can be any
functional of the neutron angular flux, although quantities such as
the exiting partial current, fission rate or the flux distribution itself
tend to be the most useful. In this work, the responses and source
terms are expanded in Legendre polynomial series in time. The
response functions, which embody the relationship between
source and response, provide the coupling needed to calculate
the coefficients of the response expansion in terms of the source
expansion coefficients. Once the response functions have been
determined, the transport problem is reduced to the computation
of a relatively small number of response coefficients.

Previous work has successfully implemented a response-func-
tion-based approach for full-core 3D steady-state reactor prob-
lems, showing both a high level of accuracy and significant
improvements in efficiency relative to alternative methods (Forget
and Rahnema, 2006b). In steady-state, response functions express
the relationship between responses (the eigenvalue and fission
rates) and sources (incoming partial currents) in the space, angle
and energy domains. The current work extends the theory by addi-
tionally addressing the time-dependence of responses. Since this
work represents a preliminary investigation into time-dependent
response function theory, we will intentionally restrict our consid-
erations to systems in which the space and angle dependence can
be eliminated (i.e. semi-infinite slab geometries with uniform
sources). This restriction is for convenience and simplicity; it is
not a constraint imposed by underlying theoretical assumptions.

The following section presents a derivation of the time-depen-
dent response equations. Section 3 presents some example prob-
lems and results, followed by some closing remarks and
directions for future work.


http://dx.doi.org/10.1016/j.anucene.2010.03.010
mailto:farzad@gatech.edu
http://dx.doi.org/10.1016/j.anucene.2010.03.010
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene

1596 J.M. Pounders, F. Rahnema/Annals of Nuclear Energy 37 (2010) 1595-1600

2. Theory

Consider a semi-infinite fissile slab. The monoenergetic Boltz-
mann transport equation for neutrons propagating through such
a region is

1 9y(z, K, t) N (z, ut)
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where u is the cosine of the angle of neutron flight with respect to
the slab axis. A uniform, isotropic initial condition is prescribed at
t=0 and an incident isotropic flux boundary condition is assigned
to the free surface at z=0:
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The goal is to formulate Eq. (1) in a way that is amenable to cal-
culating time-dependent responses caused by arbitrary boundary
and initial conditions. To this end, we write both boundary and ini-
tial conditions explicitly as source terms in the transport equation
so that Egs. (1)-(3) become
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where Qo =1 ¢, (see Appendix A). The solution of this inhomoge-
neous equation may be expressed in terms of the Green’s function,
Gz, u, t;2,t):
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where the Green'’s function satisfies the equation:
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If the Green’s equation is autonomous in time then
G(z,u,t —t';Z,0) = G(z, u, t;Z, t'). (7)
Using this property, the variable of time integration in Eq. (5)

can be changed from the absolute time t' to a relative response
time, T =t — t'. This substitution results in

t), tt' >0

V(z, u,t) /d‘CFO (t—1)G(z, 1, 7;0,0) + QO/ dZG(z, u,t;Z,0).

8)

The first term on the right-hand-side of Eq. (8) represents the

system response to the generic surface flux, I'y(t), while the second

term represents the system response to a uniform isotropic source

of intensity Q,. Both of these responses are special cases of the gen-

eral Green’s function, so we will consequently define the following
surface and volume response functions, respectively:

Rs(z, 4, 7) = G(z, 1, 7;0,0) 9)

Ry(z, i, t) = /0x dZG(z, u,t;Z,0) (10)

These response functions are independent of the boundary and
initial conditions: the first is the flux solution resulting from a unit
isotropic source pulsed at t = 0 while the second is the flux solu-

tion resulting from a uniform isotropic source also pulsed at time
t = 0. One may therefore construct solutions to myriad source con-
figurations (including various albedo conditions as a subset) using
only the two response functions given above. This generality en-
ables the efficiency of the current method. The governing response
equation that forms the basis for this work is obtained by inserting
the response function definitions into Eq. (8),
t
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Next, the angular flux, the boundary source and the response
function are expanded in mth order shifted Legendre polynomial
series over a predetermined time interval [0, T]:
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The expansion coefficients are given by
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Inserting these expansions into Eq. (8) yields

> Wiz, P(t) = % SO sz / dtP,(t — T)Py(T)
(=0 =0 (=0
F2Q0 Y Tz pP(D). (18)

The only approximation that has been introduced to this point
is the truncation of the Legendre series at the mth order; as m
tends to infinity, the solution of Eq. (7) will, in theory, converge
to the solution of Eq. (1).

It has been shown (Chang et al., 1987) that polynomial-based
convolution integrals such as the one appearing in the first term
of the right-hand-side of Eq. (18) can be evaluated explicitly by
writing the Legendre series as a power series. This can be accom-
plished by introducing the basis transformation matrix, fl'm]';, to
write the expansions in terms of the standard basis,
O ={1,t,t?,...,t™}, rather than the shifted Legendre basis,

P = {Po(t), P1(t),P2(t),...,Pn(t)}. The polynomials coefficients in
the @ basis can be computed by
do do
El] P a;
= [Mlsy| . (19)
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where q; represents the expansion coefficients y; or g;. Eq. (18) can
therefore be expressed as
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