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a b s t r a c t

The method of characteristics (MOC) has great geometrical flexibility but poor computational efficiency
in neutron transport calculations. The generalized minimal residual (GMRES) method, a type of Krylov
subspace method, is utilized to accelerate a 2D generalized geometry characteristics solver AutoMOC.
In this technique, a form of linear algebraic equation system for angular flux moments and boundary
fluxes is derived to replace the conventional characteristics sweep (i.e. inner iteration) scheme, and then
the GMRES method is implemented as an efficient linear system solver. This acceleration method is
proved to be reliable in theory and simple for implementation. Furthermore, as introducing no restriction
in geometry treatment, it is suitable for acceleration of an arbitrary geometry MOC solver. However, it is
observed that the speedup decreases when the matrix becomes larger. The spatial domain decomposition
method and multiprocessing parallel technology are then employed to overcome the problem. The calcu-
lation domain is partitioned into several sub-domains. For each of them, a smaller matrix is established
and solved by GMRES; and the adjacent sub-domains are coupled by ‘‘inner-edges’’, where the trajectory
mismatches are considered adequately. Moreover, a matched ray tracing system is developed on the basis
of AutoCAD, which allows a user to define the sub-domains on demand conveniently. Numerical results
demonstrate that the acceleration techniques are efficient without loss of accuracy, even in the case of
large-scale and strong scattering problems in complex geometries.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the process of reactor physical analysis, neutron transport
equation often has to be solved accurately in very complicated
geometries. Among various deterministic methods for neutron
transport calculation, the method of characteristics (MOC) is the
best candidate to treat strong geometrical heterogeneities (Askew,
1972). In this algorithm, sets of trajectories crossing the computa-
tional domain are generated in each of the discretized directions
and intersect numerous arbitrary-shaped spatial meshes with flat
or linear source approximations. Then the neutron transport equa-
tion is solved by sweeping the trajectories repeatedly to obtain the
angular fluxes and mean scalar flux in every mesh.

Owing to the great geometrical flexibility by nature, MOC has
been included as an important neutron transport solving module
by many reactor analyzing softwares in recent years (Sanchez
et al., 1988; Knott et al., 1995; Halsall, 1998). AutoMOC is one of
the MOC programs (Chen et al., 2008). Its novelty consists in the
use of the powerful functionality on engineering graphics and cust-

omizations offered by the computer aided design software Auto-
CAD in geometry processing and ray tracing. Distinguished from
some other MOC solvers which utilize modular ray tracing tech-
nique (Halsall, 1980; Cho et al., 2008; Tang and Zhang, 2009), Auto-
MOC is based on the long characteristics technique. It generates
characteristics rays in the entire problem domain and hardly im-
poses limitation on geometry.

However, AutoMOC encounters computational efficiency
problems just like other MOC solvers do; hence an effective and
geometry-flexible acceleration technique is urgently needed. The
well-known acceleration technique coarse-mesh finite difference
(CMFD) method has been applied to MOC solvers for large-scale
calculations in reactors (Joo et al., 2002; Cho et al., 2008; Tang
and Zhang, 2009) and favorable effects were gained. However,
the method which is based on the finite difference format has
the inherent drawback of geometrical applicability. The difficulty
is overcome by the generalized coarse-mesh rebalance (GCMR)
(Yamamoto, 2005) and the generalized coarse-mesh finite differ-
ence (GCMFD) method (Chai et al., 2010). Unfortunately, a factor
which determines the convergence property cannot be given as a
priori, which is a flaw in theory though it could be handled numer-
ically as an expedient. Some other techniques such as the multigrid
method (Grassi, 2007) have been proposed to accelerate MOC in
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generalized geometry. However, sometimes the acceleration ef-
fects may be weakened by the time-consuming solution of acceler-
ation equations.

In this study, an acceleration technique based on the Krylov
subspace methods for linear algebraic equation systems is con-
ducted. It requires no additional acceleration step and avoids
redundant computational effort. A form of linear system is con-
structed to replace the conventional characteristics sweep (i.e. in-
ner iteration) scheme in MOC. The angular flux moments and
boundary angular fluxes are involved in the linear systems instead
of the scalar fluxes and boundary currents respectively (Dahmani
et al., 2005), which makes the description of transport problems
more precisely. Then the equation systems are solved by the
generalized minimal residual (GMRES) method, which is a
widely-used Krylov subspace method for solving systems with
non-symmetric coefficient matrices efficiently. Comparing with
another Krylov subspace method Lanczos algorithm (Santandrea
and Sanchez, 2002), the GMRES method skips the symmetrization
process and permits the potential use of several preconditioners.
The geometry flexibility of this technique is perfect due to the the-
oretical equivalence between the original MOC and the accelerated
one. Moreover, it is reliable in theory and simple for
implementation.

However, it is observed that the speedup decreases when the
matrix becomes larger in the Krylov subspace acceleration method.
The main reason is that the time spent on both the construction
and solution of the matrix increases sharply as the matrix grows
large. This problem causes the inability of the Krylov subspace
acceleration method in dealing with multi-assembly-level or
core-level computations.

The domain decomposition (DD) method is a powerful tool for
large-scale scientific computations. Its principle is ‘‘divide-and-
conquer’’. In this algorithm, the total computational domain is di-
vided into several overlapping or non-overlapping sub-domains,
each of which is coupled with its own adjacent sub-domains. Cal-
culations are carried out separately in each sub-domain and then
communications occur between adjacent ones. It has been proved
that the above iteration process will finally converge to the true
solution of the original problem if only the coupling conditions
are appropriate (Saad, 1996). As a result, a large-scale problem is
successfully converted into several smaller ones by the DD method.
In addition, calculations in sub-domains are independent to some
degree; hence multiprocessing parallel technology could be uti-
lized to improve the computational efficiency.

The DD method has been applied to some famous MOC solvers
as a parallel computing scheme. An angular DD method is invoked
in CRX (Lee et al., 2000) and GALAXY (Yamaji et al., 2010), and
laudable parallel efficiency is obtained though it is not so econom-
ical on treatments of the white boundary condition. A spatial DD
method is utilized in CHAPLET (Kosaka and Saji, 2000), which is
an assembly modular ray tracing MOC solver instead of a 2D gen-
eralized geometry one. In our study, a spatial non-overlapping do-
main decomposition method, which is based on the 2D generalized
geometry Krylov-accelerated MOC solver AutoMOC, is proposed to
solve the aforementioned problem that the Krylov subspace accel-
eration method is incapable of large-scale computations. By parti-
tioning the space domain into sub-domains, a burdensome matrix
is converted into smaller ones, which are much easier to be con-
structed and solved. Adjacent sub-domains are coupled by ‘‘in-
ner-edges’’, where the trajectory mismatches between adjacent
sub-domains are considered adequately. Multiprocessing parallel
technology is utilized after an adjustment on the conventional
computation flow. Moreover, a matched ray tracing tool is devel-
oped on the basis of the original AutoMOC ray tracing system,
which allows the user to define the sub-domains on demand
conveniently.

The remainder of this paper is organized as follows. Section 2
exhibits the methodology of this work, including the mathematical
derivation and details in implementation. Section 3 is dedicated to
some numerical results which demonstrate the relative efficiency
and accuracy compared with the original program AutoMOC. Final-
ly we draw some conclusions and make a few suggestions in
Section 4.

2. Theoretical model

Two parts exist in this section. The first part is for the Krylov
subspace acceleration method, including the derivation of the
MOC linear system and implementation details. The second part
is about the DD method, which is composed of the theoretics, the
geometry processing technique and the parallelization technique.

2.1. The Krylov subspace acceleration method

2.1.1. Basic equations of MOC
In the MOC calculation, the computational domain is parti-

tioned into a number of regions, in each of which the source and
cross-section are both assumed to be constants. Hence the time-
independent multigroup neutron transport equation can be writ-
ten in region i on track line segment k by omitting the energy
group superscripts g:

dwi;kðs;X
*

Þ
ds

þ Rt;iwi;kðs;X
*

Þ ¼ Q i;kðX
*

Þ ð1Þ

where s is the local coordinate along the track line. Thus the angular
flux distribution along the track line can be obtained by the analyt-
ical solution of Eq. (1):
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where win
i;kðX

*

Þ is the incident angular flux to region i along line seg-
ment k in direction X

*

. The mean angular flux in region i along direc-
tion X

*

is considered as
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k
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here, wi;k is the mean angular flux along segment k, which can be ob-
tained by integrating Eq. (2) along k; and Vi is the volume of region i,
which can be approximately represented as Vi �

P
ksi,kdAk, where

the sum is over all the segments in region i along direction X
*

,
involving the segment length si,k and its width dAk. Thus Eq. (3)
has the following form:
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where wout
i;k is the exiting flux along k from region i; Qiso

i and Qaniso
i are

respectively the isotropic and anisotropic source in region i. Hence
the mean scalar flux in region i can be written after obtaining the
mean angular flux in each discretized direction:

/i ¼
Z

4p
wiðX

*
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*

Þ �
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m¼1
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*
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where M is the total number of discretized directions; and xm is the
weight of direction m.

On the treatment of reflective boundary conditions in complex
geometry, mismatches between incoming and outgoing directions
are often encountered due to the variety of outer boundary. As the
illustration in Fig. 1, X

*

m0 is the specular reflection direction of X
*

m.
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