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a b s t r a c t

Using a generalized formula for the space and energy dependent Feynman-a method, which was origi-
nally derived by Endo et al. and Muñoz-Cobo et al., the effect of higher order modes of the a-mode eigen-
value problem on the Feynman Y function has been investigated. To deal with a large number of higher
order modes, the diffusion approximation is adopted instead of the transport theory for a one-dimen-
sional homogeneous infinite slab. By making a transport correction to low order mode eigenvalues and
eigenfunctions, the formula can accurately reproduce the Monte Carlo simulation results of the Feyn-
man-a method. By virtue of these efforts, an accurate numerical application of the generalized formula,
which has not been performed due to the difficulty in solving the higher order a-mode eigenvalue prob-
lem, has been made possible. Sample numerical examples for a near-critical system and a deeply-
subcritical system quantitatively demonstrate how the Feynman Y functions are decomposed into the
higher order mode components. While the higher order mode components in the Feynman Y function
can be negligible in a near-critical system, the Feynman Y function in a deeply-subcritical system is found
to be severely contaminated by the higher order modes.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Feynman-a method is one of representative reactor noise
methods for determining the subcriticality of a neutron multiply-
ing system (Feynman et al., 1956). The method deduces an a value
(prompt neutron time decay constant) from the variance-to-mean
ratio of neutron counts. The basic theory of the method was origi-
nally derived for a space and energy independent situation. In a
realistic neutron multiplying system, however, there exists the
space and energy dependence in neutron flux, and thus the effect
of higher order mode neutron flux needs to be considered for accu-
rate estimation of subcriticality. The Feynman-a method is known
to give accurate a values in near-critical but subcritical multiplying
systems (Misawa et al., 1990; Tonoike et al., 2004). In near-critical
systems, the ratios of a values of the higher order modes to that of
the fundamental mode become large. In this case, the effect of the
higher order modes is insignificant. On the other hand, a values
measured by the Feynman-a method differ from the fundamental
mode a value as the subcriticality becomes larger (Misawa et al.,
1990). This is due to the fact that the ratios of a values of higher
order modes to that of the fundamental mode are small and the
zeffects of the higher order modes become significant. Therefore,
for accurate estimation of subcriticality, it is important to quantify

the effects of higher order modes in a subcriticality measurement
with the Feynman-a method.

The space and energy dependent theoretical formula for the
Feynman-a method was derived by Endo et al. (2006), Ballester
and Muñoz-Cobo (2005) and Muñoz-Cobo et al. (2011). Endo
et al. derived a Green’s function defining a neutron density at a
certain point in four-dimensional phase space (space, energy,
direction and time) caused by a neutron born at another point.
Using the Green’s function, a correlated pair-detection probability
was derived and eventually a theoretical formula for the space and
energy dependent Feynman-a method was derived by double
integration of the detection times. With this theoretical formula,
it is expected to decompose a Feynman variance-to-mean ratio
(or Feynman Y function) into the fundamental mode and other
higher order mode components. On the other hand, Ballester
et al. and Muñoz-Cobo et al. derived a similar but seemingly
different formula for the Feynman Y function by using stochastic
transport theory and then expanding it in alpha modes. However,
no comprehensive numerical example for the space and energy
dependent Feynman-a method has been presented although some
related attempts have been performed thus far (Ballester et al.,
2005; Muñoz-Cobo et al., 2011). It may be due to the difficulty that
the formula requires the higher order eigenfunctions and
eigenvalues of the a-mode neutron transport eigen equation. It is
anticipated that a considerable number of higher order modes
are required especially for a deeply-subcritical system. Meanwhile,
the higher the order, the more difficult it is to obtain the
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eigenfunction. It is important to present numerical examples using
the formula for a Feynman Y function, thereby knowing how a
Feynman Y function is influenced by higher order modes in a sub-
criticality measurement.

In this paper, the author attempts to verify whether a Feynman
Y function obtained by a Monte Carlo simulation of the Feynman-a
method can be reproduced by summing a sufficient number of
higher order mode components according to the theoretical for-
mula. Then, how the Feynman Y function is influenced by higher
order modes is discussed.

2. Formula for space and energy dependent Feynman-a method

In this section, the formula for the space and energy dependent
Feynman-a method derived by Endo et al. (2006) and Muñoz-Cobo
et al. (2011) is briefly explained.

Let us consider a subcritical neutron multiplying system having
a finite geometry where neutrons are emitted from an external
neutron source by following the Poisson process. For simplicity,
it is assumed that only one neutron is emitted from the external
neutron source at one time. Thus, there is no need for considering
the correlation between multiple source neutrons generated at one
time. Furthermore, m (the number of neutrons emitted per fission)
is assumed to be a non-stochastic fixed value whereas it is actually
a random variable. The probability that one neutron is detected
during dt1 about t1 is given by

Pðt1Þdt1 ¼ CRdt1; ð1Þ

where

CR ¼
X1
n¼0

SnDn

an
ðneutron count rateÞ; ð2Þ

Sn ¼
Z

V
dVSð~rÞW�s;nð~rÞ; ð3Þ

W�s;nð~rÞ ¼
Z 1

0
dE
Z

4p
dX

vsðEÞ
4p

w�nð~r; E; ~XÞ; ð4Þ

Dn ¼
Z

V
dV
Z 1

0
dE
Z

4p
dXRdð~r; EÞwnð~r; E; ~XÞ; ð5Þ

an = prompt neutron time decay constant in the nth mode,
Sð~rÞ = spatial distribution of the external neutron source intensity,
vs(E) = energy spectrum of external neutron source, Rdð~r; EÞ = cross
section of detector, w�nð~r; E;X

*

Þ = nth mode eigenfunction of a-mode
adjoint transport equation, wnð~r; E;X

*

Þ = nth mode eigenfunction of
a-mode forward transport equation, and the volume integral is per-
formed over the whole volume. The a-mode forward transport
equation for the nth mode is defined as
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Z 1
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where tðEÞ is the neutron velocity and other notations are standard
within the nuclear engineering community. The a-mode adjoint
transport equation for the nth mode is defined as

� ~X � rw�nð~r; E; ~XÞ þ Rtð~r; EÞw�nð~r; E; ~XÞ �
Z 1

0
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The a-mode eigenfunctions have an orthogonality condition as
follows:Z

V
dV
Z 1

0
dE
Z

4p
dX

1
tðEÞw

�
mð~r; E; ~XÞwnð~r; E; ~XÞ ¼ dmn; ð8Þ

where dmn is the Kronecker delta. The orthogonality condition (i.e.,
Eq. (8)) and Dn in Eq. (5) are slightly changed from those in the
paper by Endo et al. (2006) in dealing with the velocity.

The probability of a pair of neutron counts during the time
intervals dt1 about t1 and dt2 about t2 (t2 > t1) resulting from a
fission event is given by (Endo et al., 2006)

P2;cðt1; t2Þdt1 dt2 ¼
X1
‘¼0

X1
m¼0

X1
n¼0

S‘F‘!mnDmDn

a‘ðam þ anÞ
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where
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Eq. (9) for the probability of correlated counts from fissions events
is the same in principle as Eq. (67) in the paper of Muñoz-Cobo et al.
(2011). The probability of a uncorrelated pair detection resulting
from two independent neutron families is also given by

P2;uðt1; t2Þdt1 dt2 ¼ P1ðt1ÞP1ðt2Þdt1 dt2: ð12Þ

The expected number of pairs detected during the counting gate
width T is given by

CðTÞðCðTÞ � 1Þ
2

� �
¼
Z T

0
dt2

Z t2

0
ðP2;uðt1; t2Þ þ P2;cðt1; t2ÞÞdt1; ð13Þ

where the bracket hi stands for an average over time. As a result,
Y(T) in the Feynman-a method taking into account the space and
energy dependence is given by (Endo et al., 2006)

YðTÞ ¼ hCðTÞðCðTÞ � 1Þi � hCðTÞi2

hCðTÞi ¼ hCðTÞ
2i � hCðTÞi2
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However, Muñoz-Cobo et al. (2011) derived a similar but different
formula for the Feynman Y function as

YðTÞ ¼
X1
m¼0

X1
n¼0

Ym;nðTÞ; ð16Þ

where
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