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a b s t r a c t

In nuclear engineering field, the Monte Carlo method has been used to solve the eigenvalue or criticality
problem for many years. The theoretical basis for solving the eigenvalue problem is the power iteration
method, which exhibits slow convergence when the dominance ratio of the system is close to one. To
overcome this drawback, a modified power iteration method, which could compute the first two eigen-
pairs at the same time, was proposed and its validity was exemplified for one-dimensional mono-ener-
getic problems. In this paper, we implemented this method to one-dimensional two-group problems and
proved its validity for these problems. This work indicates the capability of the modified power iteration
method to solve practical multi-group or continuous energy problems.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The most frequently applied principle of using the Monte Carlo
method to solve nuclear criticality or eigenvalue problems is the
same as in deterministic methods, i.e., power iteration method
(Golub and Van Loan, 1996). The convergence rate of the power
iteration method depends on the dominance ratio of the operator
or matrix, which challenges the Monte Carlo method when the
problem has a high dominance ratio close to one. A high domi-
nance ratio generally requires the Monte Carlo method to simulate
the problem for a very long time before the fission source distribu-
tion converges; moreover, this initial portion of the simulation has
to be discarded from tallying. Therefore, convergence acceleration
methods are desired to reduce the uncertainty of the results with
significantly less computational cost. Recently, a new means to
accelerate the fission source convergence was proposed by Booth
and Gubernatis (2009) using a modified power iteration method.
In addition to the capability of convergence acceleration, the new
method can also calculate the second eigenpair simultaneously
with the fundamental eigenpair. We confirmed the validity of the
method with a one-dimensional mono-energetic problem and ex-
plored the behavior of estimated variance (Shi and Petrovic,
2010), but—while in principle expected—no examples or illustra-
tions were available to guarantee that the modified power iteration
method will work for a multi-group or continuous energy problem.
In this paper, we will examine the capability of the modified power

iteration method when applied to one-dimensional problems with
two energy groups.

2. Review of the modified power iteration method

We first review some basic properties of eigenfunctions and
eigenvalues. An eigenvalue problem is to find the function(s) w
and value(s) k satisfying equation Aw = kw, where A represents
an operator or a matrix. There exist certain values ki, which are
called eigenvalues, and functions wi, which are called eigenfunc-
tions, satisfying the relation:

Awi ¼ kiwi; where jk1j > jk2j > jk3j > � � � � � � : ð1Þ

The eigenvalue with the largest absolute value k1 is called the
fundamental eigenvalue and the corresponding w1 is called the
fundamental eigenfunction. Similarly, the eigenvalue with the sec-
ond largest absolute value k2 is called the second eigenvalue and
the pairing eigenfunction w2 is called the second eigenfunction.
Generally, a well-behaved function w can be decomposed over
the basis of all the eigenfunctions. By repeatedly left-multiplying
A with certain renormalization, the well-behaved initial function
w will converge to the fundamental eigenfunction:

lim
n!1

1
kn

1

Anw ¼ w1: ð2Þ

One could also estimate the fundamental eigenvalue k1:

k1 ¼ lim
n!1

Anw

An�1w
: ð3Þ
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If a parameter or unknown x is introduced as a coefficient of the
decomposition of a well-behaved function w (Booth, 2006), we
may write:

w ¼
X

i

ðai þ bixÞwi; ð4Þ

where ai and bi are general coefficients.
Similar estimates of the eigenfunction and eigenvalue with ren-

ormalization will become:

lim
n!1

1
kn

1

Anw ¼ lim
n!1

1
kn

1

ðða1 þ b1xÞkn
1w1 þ ða2 þ b2xÞkn

2w2Þ; ð5Þ

lim
n!1

Anw

An�1w
¼ lim

n!1

ða1 þ b1xÞkn
1w1 þ ða2 þ b2xÞkn

2w2

ða1 þ b1xÞkn�1
1 w1 þ ða2 þ b2xÞkn�1

2 w2

: ð6Þ

According to Eq. (6), an estimate of the eigenvalue with un-
known x can be performed in two different sub-regions of the
system. The convergence condition requires that the two esti-
mates are equal, so by equating the two estimates, a quadratic
equation in x is obtained. These two roots, when inserted into
Eq. (6), produce the fundamental eigenvalue k1 and the second
eigenvalue k2, respectively. The corresponding eigenfunctions
are also obtainable by inserting x into Eq. (5). One advantage
of this method is the potential to increase the convergence rate
from k2/k1 to k3/k1. Thus, if the difference of these two ratios is
significant, the reduction of the required computational time
may be dramatic.

However, as the convergence goes on, the difference between
the coefficients, {ai} and {bi}, will diminish and the modified power
iteration method will numerically collapse (i.e., be able to generate
only the first eigenpair). Several refinements (Gubernatis and
Booth, 2008; Shi and Petrovic, 2010) have been proposed to update
the function w to avoid the collapse. These refinements enabled the
modified power iteration method to simulate the problem as long
as required to reduce the statistical uncertainty caused by the
Monte Carlo method to the desired level.

3. Monte Carlo simulation procedure

We implemented the modified power iteration method to
eigenvalue problems with two energy groups and examined the
validity of obtained results. For simplicity, we only used the colli-
sion estimator to estimate keff. The simulation procedure is essen-
tially the same as that for a mono-energetic problem: we first
divided the entire system into two sub-regions; then, we generated
two sets of sources with different distributions to initialize the
simulation; we estimated the keff in each sub-region with a param-
eter x multiplying one of the estimates by the Monte Carlo simula-
tion; finally, we solved the quadratic equation for x to compute the
fundamental and second eigenpair, and generated two source dis-
tributions again for the next generation, which is based on the sec-
ond refinement in Gubernatis and Booth (2008).

This scheme requires weight cancellation of the fission source
distributions, which is hard to perform because the source distri-
bution only includes the positions of fission events. Several weight
cancellation and source generating approaches are available in the
references (Booth, 2003; Booth and Gubernatis, 2009; Yamamoto,
2009; Booth and Gubernatis, 2010). In this work, we apply the
method presented in Yamamoto’s work (2009), which projects
the source distribution to tally meshes. The general cell-based flux
tally with collision estimator for a single material with one energy
group is given by the following equation:

Cell flux ¼ 1
V � N

�
X

i

wi

Rt
; ð7Þ

where V is the mesh volume; N is the total number of particles
used; i is the collision index taking place in the specific mesh; wi

is the weight of particles; and Rt is the total cross-section for each
collision.

However, the cell flux tally has some disadvantages, which
make it impractical in multi-group simulations with non-fission-
able materials. Therefore, we selected to use the total fission den-
sity distribution to represent the spatial convergence of the
problem. The fission density tally with collision estimator for a sin-
gle material is shown in the following equation:

Fission density ¼ 1
V � N

�
X

i

wi � �m � Rf

Rt
: ð8Þ

This is an energy-integrated tally that is reasonable to use in
reactor physics since the fission source spectrum at each location
should be almost iteration independent. As a result, it is easily
applicable for either multi-group problems or continuous energy
problems. Therefore, by employing tally meshes small enough so
that the approximation is accurate enough, the weight cancellation
may be performed on the mesh basis.

After the weight cancellation with the fission density tally, we
generated the same number of particles in each tally mesh with
specific weights adjusted to conserve the total source weight in
each generation. In addition to the fission density tally, we still re-
corded the cell flux tally to compute the eigenfunctions.

4. Problem one: single-region problem

The first problem we would like to simulate is a one-dimen-
sional two-group problem with single fission material, whose pos-
tulated cross-section data are listed in Table 1. The cross-section
values chosen here are not necessarily realistic, but our purpose
is to verify the validity of the modified power iteration method
and our implementation. The system extends from �4.5 cm to
4.5 cm along the Z direction with vacuum on either side. We di-
vided the system into two sub-regions, the left one (�4.5–0 cm)
and the right one (0–4.5 cm), to estimate the keff separately. We
also divided the system into 100 meshed evenly along the Z direc-
tion for the flux estimate and fission density computation.

We used the MCNP5 (X-5 Monte Carlo Team, 2003) with
user-specified multi-group cross-section data to generate refer-
ence results. The reference simulation employed 50,000 particles
per generation for 1000 active generations after the convergence
of the fission source. Our computation with the modified power
iteration employed 10,000 particles per generation, 50 inactive
generations, and 100 active generations. Table 2 compares the keff

results from MCNP5 and our computation. This comparison of the

Table 1
Two-group data for fission material (cross-section in cm�1).

Rt Rc Rf m Rin-group Rout-group

Group 1
1.0 0.05 0.05 3.0 0.1 0.8 1.0

Group 2
1.0 0.2 0.1 3.0 0.0 0.7 0.0

Table 2
Comparison of keff for problem one.

MCNP5 Modified method Difference

0.94386 ± 0.00008 0.94401 ± 0.00019 0.7r
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