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a b s t r a c t

The objective of nuclear fuel management is to minimize the cost of electrical energy generation subject
to operational and safety constraints. In the present work, a core reload optimization package using con-
tinuous version of particle swarm optimization, CRCPSO, which is a combinatorial and discrete one has
been developed and mapped on nuclear fuel loading pattern problems. This code is applicable to all types
of PWR cores to optimize loading patterns. To evaluate the system, flattening of power inside a WWER-
1000 core is considered as an objective function although other variables such as Keff along power peak-
ing factor, burn up and cycle length can be included. Optimization solutions, which improve the safety
aspects of a nuclear reactor, may not lead to economical designs. The system performed well in compar-
ison to the developed loading pattern optimizer using Hopfield along SA and GA.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nuclear fuel management involves making the so called the
out-of-core and in-core decisions. The out-of core decisions ad-
dress the attributes of the fresh fuel that will be fabricated and par-
tially burnt fuel to reinsert into the core for additional energy
generation. The in-core decisions address where the fresh and
burnt fuel along with burnable poisons should be located in the
core. The core reload design process encompasses a complex set
of decisions, spread over a period of time, with the final goal of
specifying a core capable of producing a demand-imposed target
cycle energy, at the minimum cost, with appropriate margins to as-
sure that given acceptable fuel design limits are not exceeded dur-
ing any condition of normal operation, including the effects of
anticipated operational occurrences. These margins are detailed
in a reactor’s final safety analysis report, FSAR. In recent decades
there has been an effort to establish computational capability to
assist the reload core decision. Several techniques have been devel-
oped such as dynamic programming (Wall and Fenech, 1965; Stout
and Robinson, 1973), direct search (Motoda et al., 1975), varia-
tional techniques (Terney and Williamson, 1982), backward diffu-
sion calculation (Chao et al., 1986), reverse depletion (Downar and
Kim, 1986), linear programming (Okafor and Aldemir, 1988; Still-
man et al., 1989), simulated annealing (Parks, 1990; Kropaczek
and Turinsky, 1991; Smuc et al., 1994; Mahlers, 1995), hopfield
neural network along simulated annealing (Sadighi et al.,
2002a,b; Fadaei and setayeshi, 2008), genetic algorithms (Yamam-

uto, 1997), knowledge-based systems (Galperin and Nissan, 1988;
Galperin et al., 1989; Galperin and Kimhy, 1991), particle swarm
optimization (Meneses et al., 2009; Babazadeh et al., 2009). None
of these optimization approaches ensures the global optimum
solution because of the limitations of their search algorithms; they
can only find near optimum solution (Kim et al., 1993a,b). While
these techniques have been successfully implemented to solve
loading pattern in PWRs, each has inherent drawbacks. Recent re-
searches show the stochastic methods such as simulated annealing
(SA), genetic algorithm (GA) and particle swarm optimization
(PSO) seem to be more suitable owing to the evolution in powerful
computer hardware.

Poon and parks (1993) compared GAs to simulated annealing, it
was found that GA optimization worked better in the initial global
search, but simulated annealing was better for local search. Baba-
zadeh et al. (2009) applied discrete version of PSO algorithm to the
optimization of the fuel core loading pattern in nuclear power
reactors. In this paper the continuous version of PSO is exploited
and implemented. The method is simple, uncomplicated and it
converges quickly.

Optimization goals vary: maximization of burn up or excess
reactivity minimization, minimization of power peaking, cycle
costs, etc. In this work flattening of the power distribution is se-
lected as an objective function. Besides power peaking factors
other parameters as well as their combination could be imple-
mented in the developed software as an objective function. In spite
of significant efforts devoted to the problem, no standard methods,
with industry-wide acceptance and adequate compromise be-
tween simplicity and accuracy, are in general use to generate
acceptance candidate core reload patterns meeting realistic opti-
mizing criteria.
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2. Swarm intelligence

Swarm intelligence is an attempt to design algorithms or dis-
tributed problem solving devices inspired by the collective behav-
ior of social insects and other animal societies (Bonebeau et al.,
1999). Particle swarm optimization (PSO) and ant colony optimiza-
tion (ACO) are the most popular optimization frameworks based
on the original notion of swarm intelligence. They are based on
the repeated sampling of solutions to the desired problem which
means each agent provides a solution (Unler, 2008). PSO is a
population-based stochastic approach for solving continuous and
discrete optimization problems. PSO was first introduced by Ken-
nedy and Eberhart in 1995, which is inspired by social behavior
of bird flocking and fish schooling. PSO has many similarities with
genetic algorithm (GA). Both GA and PSO are similar in the sense
that both techniques are population-based search but employ dif-
ferent strategies and computational efforts to find best solution.
For example both of them start their process with an initial popu-
lation but in PSO there are no evolution operators. Furthermore, it
does not require any cross over or mutation and this is one of the
most benefits of the PSO. In addition, its memory and CPU speed
requirement are low (Eberhart et al., 1996). In PSO, a set of ran-
domly generated solutions propagates in the design space towards
the optimal solution over a number of iterations based on large
amount of information about the design space that is assimilated
and shared by all members of the swarm.

2.1. Continuous PSO system

Two basic approaches for continuous PSO formulation are used:
inertia weight approach, IWA, and constricted factor approach, CFA.

2.1.1. Inertia weight approach
In continuous PSO, each particle moves in the search space with

a velocity according to its own previous best solution and their
group previous best solution. The position of a particle represents
a candidate solution to treat the optimization considered problem.
The following equations are used to iteratively modify the particle
velocities and positions at each time step, i.e.:

v tþ1
id ¼ wtv t

id þ c1rt
1ðpbestid � xt

idÞ þ c2rt
2ðgbestd � xt

idÞ ð1Þ

xtþ1
id ¼ xt

id þ v tþ1
id ð2Þ

where i = [1, 2, . . . , n], d = [1, 2, . . . , m], n = number of particles in a
group, m = elements of particle vectors, and v t

id = velocity of the par-
ticle at time step t, xt

id = position at time step t, c1, c2 = acceleration
constants, r1, r2 = random number between 0,1, wt = inertia weight
at time step t, pbestid = previous best position of the particle at time
step t. (sometimes called best neighbor), gbestd = best position
among all particles at time step t, t = current iteration.

It can be observed the new particle position is obtained by add-
ing the particle’s current position and the new velocity using Eq.
(1). The investigations show that the continuous PSO has more
chance to ‘‘fly” into the better solutions region and converge
quickly (Khoshahval, 2009), so it can discover reasonable quality
solution faster than other evolutionary algorithms. One of the
drawbacks of this method is parameter dependency of the method.
The continuous PSO parameters are very important since they have
significant impact on optimization results. Therefore, a sensitivity
analysis on the continuous PSO parameters, especially on the num-
ber of particles and maximum iteration, is carried out in this paper.
Considering standard PSO for continuous optimization, one usually
obtains reasonable results using acceleration constants in such a
way that c1 + c2 = 4.1 (Clerc and Kennedy, 2002), therefore the
number of parameters needed by this metaheuristic is quite re-

duced. An analogous approach is carried out to obtain proper accel-
eration constants in this paper and it is found that, taking c1 = c2 = 2
are proper choice. The inertia weight could be picked out as a con-
stant value but it is preferred to define a variable w which de-
creases linearly during a run, i.e.:

wt ¼ wmax �
wmax �wmin

tmax

� �
t ð3Þ

where wmax is initial weight, wmin is final weight, tmax is maximum
iteration (generation) number and t is current iteration number.

The value of the wmax, wmin, tmax are chosen through the evalu-
ation of the outputs by running the program a few times. Following
a survey, we used wmax = 0.8 and wmin = 0.4. In our program two
different values of 80 and 100 are selected for tmax to compare
the effect of the iteration number on the results. However, Eberhart
and Shi (1998a,b) have illustrated the following parameters are
appropriate and do not depend on problems, i.e.:

ci ¼ 2:0; wmax ¼ 0:9; wmin ¼ 0:4

Original formulation of continues PSO which developed in 1995
did not include any inertia weight as a coefficient for the velocity
v t

id. In the early versions of continues PSO, Vmax (a limitation factor
for velocity of each particle) had a great significance, the motiva-
tion to eliminate the need for Vmax lead to a more appropriate ver-
sion and introduce a weighting factor. To sum up, PSO using (1), (3)
is called inertia weight approach, IWA. This method was first re-
ported in the literature in 1998 (Eberhart and Shi, 1998a,b).

2.1.2. Constricted factor approach
In contrast, another development of continuous PSO was under-

taken by Clerc and Kennedy (2002) which is called constricted fac-
tor approach, CFA, of PSO. A detailed discussion of the constricted
factor is beyond the scope of this paper, but in a simplified form the
velocity is defined by,

Vtþ1
id ¼ cfkðVt

id þ c1 � rt
1ðpbestid � xt

idÞ þ c2 � rt
2ðgbestd � xt

idÞÞ ð4Þ
where cfk is a function of c1 and c2, i.e.:

cfk ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

q����
����
; where / ¼ c1 þ c2; / > 4 ð5Þ

The convergence characteristic of the system can be controlled
by /. In addition the system can search different regions efficiently
by avoiding premature convergence (Lee and El-Sharkawi, 2008).

Both IWA and CFA methods are similar except that CFA utilizes
a different expression to work out of velocity. Unlike other evolu-
tionary computation methods, PSO with CFA ensures the conver-
gence of the search procedures (Fukuyama, 2000). In the present
work, both of these methods are mapped, used and compared for
the fuel loading pattern problem of a nuclear reactor core.

3. Neutronic calculation

Reactor physics calculation provides the basic information for
in-core fuel management analysis. The major objective of these
neutronic calculations is the prediction of core parameters such
as reactivity, power density, macroscopic cross sections and burn
up. Well developed neutronic codes are available to perform anal-
ysis of LWR cores in detail. In our developed software, CRCPSO, the
core calculation is performed by CITATION LDI-2 code (Fowler,
1999). CITATION has been developed to solve multi-group diffu-
sion equation in 3-D. In addition, WIMS-D4 code (Winfrith, 1985)
is used to generate average group constants for different fuel
assemblies (Table 1). A major feature of the above computer codes
is their robustness. They are in widespread use and they have been
benchmarked against WWER reactor cores experimental data (Fag-
hihi et al., 2007).
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