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The present work discusses the calculation of the diffusion coefficient of a lattice of hexagonal cells, with
both “sodium present” and “sodium absent” conditions. Calculations are performed in the framework of
lattice theory (also known as fundamental mode approximation). Unlike the classical approaches, our
heterogeneous leakage model allows the calculation of diffusion coefficients under all conditions, even
if planar voids are present in the lattice. Equations resulting from this model are solved using the method
of characteristics (MOC). Independent confirmation of the MOC result comes from Monte Carlo calcula-

l[()(i?%,frjv:i:;d:coefﬁcient tions, in which the diffusion coefficient is obtained without any of the assumptions of lattice theory. It is
LMFBR shown by comparison to the Monte Carlo results that the MOC solution yields correct values of the dif-
Planar void fusion coefficient under all conditions, even in cases where the classic calculation of the diffusion coeffi-
Method of characteristics cient fails. This work is a first step in the development of a robust method to calculate the diffusion
Monte Carlo coefficient of lattice cells. Adoption into production codes will require more development and validation

Benoist formalism of the method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Since the sodium void reactivity worth (SVRW) is one of the most
important neutronic parameters of fast reactors with respect to
safety, the accurate prediction of SVRW is required to carry out core
design studies efficiently. Sodium voiding changes the core reactiv-
ity (criticality) through an increase of neutron leakage and a shift of
the neutron energy spectrum. Both these phenomena should be
taken into account properly for the accurate prediction of SVRW.

A fast reactor fuel subassembly consists of a cluster of fuel pins
with cladding, which is surrounded by a hexagonal wrapper tube.
Since the exact representation of such a complicated system is unre-
alistic in numerical calculations for a whole core, homogenization
procedures have been widely and effectively used. This homogeni-
zation is usually performed on the basis of a unit lattice cell using
reflective or periodic boundary conditions, while neutron leakage
from the lattice is taken into account by the buckling concept. The
lattice-averaged diffusion coefficient is an important parameter
since it is used in core design calculations based on diffusion theory.
Furthermore, the directional diffusion coefficient is beneficial to
estimate the magnitude of anisotropic neutron streaming effects
due to the heterogeneous configuration of the unit lattice.
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In order to define the diffusion coefficient, many important
studies have been carried out in the past and several definitions
of diffusion coefficients have been proposed (Deniz, 1986). Among
these, Benoist’s classical diffusion coefficients are utilized in lattice
codes for fast reactors, and can be calculated by codes such as ECCO
(Rimpault, 1997) and SLAROM-UF (Hazama et al., 2009), because
they are relatively simple to implement into numerical calculation
tools. However, Benoist’s definition has a drawback, which is well-
known, namely the “divergence” of the diffusion coefficient in the
case of a lattice containing planar voids (a planar void is a void re-
gion of such a shape that a slab of infinite lateral dimensions and a
finite thickness can be contained in it (Gelbard, 1983)). Hence,
approximations are used in the application of Benoist’s classical
theory to such a system, such as the introduction of a fictitious
cross section into the void regions corresponding to the buckling
or smearing surrounding structural materials into the void regions.

Remedies for the divergence problem have been also proposed
in earlier work. The work done by Grimstone (1980), which uses
the theory originally proposed by Brissenden and Green (1973),
is straightforward and is founded on the same theoretical basis
as Benoist’s theory. In the work of Grimstone, the lattice flux func-
tions are calculated using one-dimensional S, theory rather than
collision probabilities. The method was not applied to a hexagonal
fast reactor pin cell directly. Rather, Grimstone applied it to a cylin-
drical cell model which can be treated by a one-dimensional dis-
crete ordinates method.
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In the present study, we apply a similar procedure as Grimstone
to a rigorous fast reactor pin cell model of hexagonal geometry
with the help of the method of characteristics (MOC). MOC is cho-
sen as a solution strategy because the calculation of the diffusion
coefficient under void conditions requires a solution with angular
resolution of the transport equation, as will be illustrated later.
Furthermore, MOC has the potential to handle highly complex
geometries. We will obtain diffusion coefficients defined by Grim-
stone’s procedure and Benoist’s classical theory, and quantify the
accuracy of Benoist’s classical procedures in a realistic fast reactor
lattice model. Through this numerical study, we will quantify er-
rors induced by the divergence problem, and also determine the
dependence of the diffusion coefficient on the buckling value
which is ignored in Benoist’s classical theory. In addition, in order
to assess our numerical procedure for diffusion coefficient calcula-
tions with MOC, an independent calculation with a Monte Carlo
method is employed to obtain diffusion coefficients. A comparison
between deterministic-based and Monte Carlo-based diffusion
coefficients will be carried out as well. This work is a first step in
the development of a robust method to calculate the diffusion
coefficient of lattice cells without or with voided regions.

2. Definition of the diffusion coefficient in lattice theory

The work presented in this paper is based on classic lattice the-
ory, also known as the fundamental mode approximation. The sys-
tem under investigation is assumed to be a finite lattice, made
up of repeating unit cells. In the present work, the unit cells are as-
sumed to be symmetric, and the unit cells could themselves be
comprised of a cluster of smaller cells. A three-dimensional system
is considered, described by variables for spatial position r, neutron
energy E and direction of propagation €. The problem is treated for
the critical eigenvalue of the lattice.

In the finite lattice, the flux has a gross asymptotic curvature
which is the same for all neutron energies and directions of prop-
agation. The curvature is represented by the buckling vector B, the
square of whose length is the geometric buckling B> To analyze the
finite lattice, it is assumed to extend to infinity (so-called image
piles approximation). This removes any transient effects due to
boundaries, and the solution becomes the deep-interior asymp-
totic solution. Thus, the flux is assumed to be described by the real
part of a complex lattice flux:

Yy(r,E, Q) = Re{fp(r,E, Q) exp(iB-r)}

fo(r,E, Q) = gg(r,E, Q) + ihg(r,E, Q) (1)

The function fz describes the intra-cell variation of the flux, with
gp and hp periodic with the cell. The exponential term, whose real
part is cos(B - r), describes the gross curvature of the flux in the lat-
tice. This flux shape corresponds to a slab reactor with its bound-
aries oriented perpendicular to the direction of B, and the width
of which is given by a® = n?/B?, where B? = ||B||>. The philosophical
considerations which lead to this factorization of the lattice flux
will not be discussed here. Deniz gives some indications for the
validity of the factorization in Deniz (1986). By contrast, Gelbard
(1983) seems to state that the choice is more based on physical
intuition and expendiency of analysis. Furthermore, Deniz (1986)
states that the unit cells can be asymmetric. Again, Gelbard and
Lell (1977) claims the opposite, and provides a simple example
of a finite lattice of asymetric cells and shows that the resulting
macroscopic flux shape is not a cosine. In the present work, which
focuses on fast reactors, the assumption of a symmetric unit cell
seems to be justified, and the flux factorization of Eq. (1) is as-
sumed valid. Taking the real part of Eq. (1), the lattice flux is given
as:

Yy(r,E, Q) = gg(r,E, Q) cos(B-r) — hg(r,E,Q)sin(B - r) (2)

2.1. Properties of the lattice flux functions

Assume that the point r = 0 corresponds to a symmetry point of
the lattice. Any position r can be written as r=n r.+r, with n an
integer, r. the lattice offset vector, and r measured in the coordi-
nate frame of a unit cell. The lattice functions gg and hg are periodic
with the lattice. They are the same for each unit cell, and therefore
they can be defined uniquely in the coordinate system of the unit
cell . In other words:

&5 :gB(r/vag) (3)
hg = hg(r',E, Q)

Whether the system is finite or infinite in size, symmetry im-
plies that ¥Yy(r,E,Q) = Ws(—r,E,—Q), as long as r=0 is chosen to
be a symmetry point of the lattice. Furthermore, it assumes that
the materials are isotropic for neutron movement (see note in
Appendix B). Thus, for a lattice of symmetric unit cells, we expect
that the flux ¥pis even in r and Q. The symmetry property of the
lattice flux thus implies:

Yp(r,E,Q) =gy (r' E,Q)cos(B-r) —hg(r',E,Q)sin(B-r) (4)
Yy(—r.E,—Q)=gyz(—1',E,—Q)cos(—B-r) — hg(—1',E,—Q)sin(—B-r)
(5)

=g(—r ,E,—Q)cos(B-r)+hg(—1',E,—Q)sin(B-r)

and thus for symmetric unit cells gz is even in r and €, and hp is odd

in r and Q. As shown in Deniz (1986), the function gz is also even in
B, and hg is odd in B.

2.2. Transport equation for the lattice flux functions

We start off by introducing several operators:

LY =V -QWPg(r,E, Q) (6)
%V = Z(r,E)P5(r,E, Q) (7)
SinWp = / dE' [ dQZ(r,E —E Q — Q)¥p(r,E,Q) (8)
0 4n
— * / /LE‘) / / /
Si¥s = dE dQ VEp(r,E)Wp(r E, Q) 9)
0 an 4n

The transport equation for the critical eigenvalue then becomes,
upon substitution of the lattice flux:

exp(iB~r)[<L+iQ~B+Zt—Sm—,]—<5f>f3} -0 (10)

Since this equation is valid for any buckling vector B, the term in
brackets must be equal to zero. Upon substitution of fz = gz + ihg, a
coupled transport equation for the lattice flux functions is found by
separating the real and imaginary parts:

V-Q—&-Zt—sm
+Q-B

-QB HgB(r,E,Q)} Hsfgs(r,b‘,ﬂ)}

V. -Q+3 —Su| L hs(r,E, Q)| k|Shs(r.E,Q)
(1)

In the present work, we have implemented a solver based on
the Method of Characteristics (MOC) to find the solutions gz and
hg. These solutions are rigorous within lattice theory, and may be
solved with the accuracy allowed by the MOC solver. In the con-
ventional approach to lattice calculations, one proceeds further,
and develops gz (even in B) and hp (odd in B) as a power series
of the buckling:
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