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a  b  s  t  r  a  c  t

This  paper  presents  a  new  approach  for performing  feasibility  analysis  over  a  multivariate  factor  space
when  the  explicit  form  of  a process  model  is lacking  or when  its  evaluation  is expensive.  Specifically,
two  issues  are  addressed:  feasibility  evaluation  of  black-box  processes  using  Kriging  and  development
of  an  adaptive  sampling  strategy  in  order  to minimize  sampling  cost,  while  maintaining  feasibility  space
accuracy.  Kriging  is chosen  as  the  interpolating  technique  for  constructing  a response  surface  of  the
feasibility  function  as  a function  of  the  uncertain  parameters  when  a set of  input–output  data  are  avail-
able.  The  adaptive  sampling  strategy  identifies  critical  regions  and  directs  the  search  towards  feasibility
boundaries  or  where  the  Kriging  prediction  uncertainty  is  high.  The  average  Kriging  prediction  error
and  cross-validation  methods  are  used  to validate  the  robustness  of  the  produced  model  of  the initial
experimental  design  which  is found  to  highly  affect the  final  predicted  feasible  region.

Published by Elsevier Ltd.

1. Introduction

Design and optimization under uncertainty is a key issue in pro-
cess systems design, since often, decisions are made with limited
knowledge about the process model and the variations in the envi-
ronmental parameters (Swaney & Grossmann, 1985). In the last
decades, several approaches have been proposed to systematically
address uncertainty in process design based on different optimiza-
tion formulations. The concept of process flexibility is one of the
fundamental tools developed in order to express, quantify and eval-
uate the ability of a process to tolerate variations in its operating
parameters or deviations of uncertain parameters from their nom-
inal values. Using the concept of process flexibility one has the
ability to calculate the maximum variations that a process can han-
dle in order to remain in a feasible steady state. The problem of
quantifying process flexibility has been well studied in the litera-
ture following the original formulation of Swaney and Grossmann
(1985), where the effects of parameters that contain considerable
uncertainty on the optimality and feasibility of a chemical process
were studied. The objective of solving such problems was to ensure
optimality and feasibility of operation for a given range of uncer-
tain parameter values, by identifying the size of the feasible region
of operation. Process flexibility is an important component of the
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operability characteristics of a process and it is formally defined as
the capability of a design to operate feasibly under uncertain condi-
tions. Mathematical formulations and indices have been developed
to quantify flexibility. In order, however, to investigate how flexible
a process is under variations during operation, the feasibility of a
process must be verified within the space defined by the range of
uncertain conditions.

Even though significant effort has been devoted in literature
to develop or improve approaches and metrics for quantifying
the feasibility of processes described by model equations (Floudas
& Gumus, 2001; Ierapetritou, 2001; Pistikopoulos & Ierapetritou,
1995; Pistikopoulos, 1995; Straub & Grossmann, 1993; Vishal &
Marianthi, 2003), fewer attempts have been made in the area
of feasibility analysis of processes where closed form models
are not available (black-box) (Banerjee & Ierapetritou, 2002). It
is often the case that the explicit form of the model connect-
ing the input parameters to the output is not available, while
the only knowledge of the system consists of a set of noisy
output values at different operating conditions. In Banerjee and
Ierapetritou (2002, 2003) and Banerjee, Pal, and Maiti (2010),
High Dimensional Model Representation methodology (HDMR) is
used for input–output mapping of black-box processes, where the
design under uncertainty problem is then solved. In Banerjee and
Ierapetritou (2005),  the feasible region is considered as an object
and shape reconstruction techniques are used to approximate the
feasible parameter space. The key to using black-box methods for
performing feasibility analysis lies in balancing the need to mini-
mize expensive and time consuming sampling with the necessity
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of accurately mapping the feasible region and strictly avoiding
overprediction.

In this work, the performance of a different black-box interpo-
lating technique – Kriging – is evaluated for performing feasibility
analysis. Kriging is a data-driven methodology that has a long his-
tory in many fields such as geology (Cressie, 1993a),  statistics and
optimization – where it is referred to as the Design and Analysis
of Computer Experiments (DACE) stochastic process model (Jones,
Schonlau, & Welch, 1998). In Kriging, the prediction at a test point
is expressed as a weighted sum of observed function values at sam-
pling points that fall within a set interval around it. From a statistical
viewpoint, Kriging is a stochastic approach that provides – for each
test point – a mean value (predictor) as well as a measure of possible
error in the prediction (variance). This approach is chosen for two
reasons, first because it has been shown that it requires fewer func-
tion evaluations than other competing methods (Jones et al., 1998)
and second because the calculated variance for each test point can
identify regions where subsequent sampling is required (Davis &
Ierapetritou, 2007).

One of the main limitations of sampling based approaches is that
there is no a priori knowledge of the number of sampling points that
are needed or the location of those points in order to provide maxi-
mum  information for the accurate prediction of the output surface
(Davis & Ierapetritou, 2010). The literature of sampling based tech-
niques for optimization focuses on optimizing both the number
and the spatial arrangement of sampling points for the identifica-
tion of a global optimum (Simpson, Lin, & Chen, 2001). Random
sampling is an easily implementable approach but it may  lead to
an inaccurate representation of the feasible region as well as a poor
model development. Stratified sampling refers to the implementa-
tion of any algorithm that samples subsets of the test points based
on a stratification rule. This type of sampling guarantees more uni-
form sampling compared to random sampling. A different strategy
known as systematic sampling refers to methodologies that incor-
porate a simple heuristic rule for the identification of the number
of samples chosen for each sampling vector. A characteristic exam-
ple is centroid based sampling which is based on the geometry
of Delaunay triangles (Davis & Ierapetritou, 2010). Finally, clus-
ter sampling leads to a non-uniform sampling set by identifying
regions of high interest and excluding regions that do not provide
useful information about the system performance. A more exten-
sive literature review of different types of sampling techniques for
optimization can be found in (Davis & Ierapetritou, 2010; Simpson
et al., 2001).

The efficiency of sampling based techniques for performing
black-box feasibility analysis has not been addressed so far in
the literature. The designation of “black-box feasibility analy-
sis” will be referred in this paper to describe the procedure of
solving the flexibility test problem and the mapping of the fea-
sible region of a process for which the closed form expression
of the model and constraints are not available. In this work,
an adaptive sampling technique which makes use of ideas from
existing sampling techniques for optimization is tailored to the
nature of the described problem and is developed for the accu-
rate feasibility space mapping reducing the required number of
samples.

The remaining of the paper is organized as follows. The mathe-
matical formulation of process flexibility is described in Section 2.
Section 3 describes the methodology used in this work to perform
feasibility analysis consisting of Kriging interpolation and adaptive
sampling, while Section 4 presents the Model Validation. Follow-
ing, Section 5 is comprised of a number of examples through which
the performance of the proposed methodology is demonstrated. An
application of the proposed methodology is described in Section 6
through the feasibility analysis of a roller compaction process for
pharmaceutical powders. Finally the paper concludes with a dis-

cussion of the results as well as future directions of the presented
work.

2. Process feasibility problem

In the literature flexibility is defined as the ability of a design
to maintain feasible steady state operation for a range of uncertain
conditions that may  be encountered during operation. The quantifi-
cation of process flexibility is achieved through the formulation of
the flexibility test problem, introduced by Swaney and Grossmann
(1985). According to the methodology introduced in this work, the
problem is represented as a max–min–max formulation, where, for
a specific design and given ranges of the uncertain parameters, the
feasible region is defined. The flexibility was  then quantified by
the flexibility index (FI), which represented the maximum allowed
deviation of uncertain parameters from their nominal values, such
that feasible operation could be guaranteed by changing the control
variables. A series of papers dealing with flexibility analysis and the
formulation and optimization of processes under uncertainty were
published in the following years, most of them, however, required
known process models and relied on particular convexity assump-
tions (Floudas & Gumus, 2001; Grossman & Floudas, 1987; Vishal
& Marianthi, 2002, 2003).

The general problem that is considered for flexibility analysis
has the following form:

min
d,z,x

f (d, z, x, �)

s.t.
h(d, z, x, �) = 0
g(d, z, x, �) ≤ 0
d ∈ Rn, z ∈ Rq, x ∈ Rq, � ∈ T

(1)

where d corresponds to the design variables, z and x represent
the control and state variables, respectively, � corresponds to
the uncertain parameters of the process, h is process equations
describing the system, g corresponds to bounds on variables, design
specifications or logical constraints, f is the objective function to
be minimized, and T = {�|�L ≤ � ≤ �U}. Eliminating the equality con-
straints h by expressing all state variables in terms of d, z and �, the
objective function of the feasibility problem (1) becomes:

min
d,z
f (d, z, �)

s.t.
y(d, z, �) ≤ 0
d ∈ Rn, z ∈ Rq, � ∈ T

(2)

Solving (2) determines whether for a given design d and values of
uncertain parameters � the control variables z can be adjusted to
satisfy all the necessary constraints and attain feasibility. This can
be accomplished if for a given value of �, all constraints yj ≤ 0 are sat-
isfied. By defining the feasibility function  (d, �) = minzmaxj∈J {yj(d,
z, �)} , where J is the set of inequality constraints, the controls are
selected such that the maximum yj is minimized. This optimiza-
tion problem can be further transformed into the following form
by introducing the scalar parameter u such that:

 (d, �) = min
u,z
u

s.t. yj(d, z, �) ≤ u, j ∈ J
(3)

In order to determine whether feasible operation can be attained in
the parameter uncertainty range T, it is clear that  (d, �) ≤ 0 for all
� ∈ T. In its most compact form, the flexibility test problem can be
represented as a max–min–max formulation, since it is sufficient
to ensure whether the maximum value of the feasibility function is
less or equal to zero in order to maintain feasible operation.

�(d) = max
� ∈ T

min
z

max
j ∈ J
gj(d, z, �) (4)
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