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a b s t r a c t

In this work five algorithms for solving the system of decay and transmutation equations with constant
reaction rates encountered in burnup calculations were compared. These are Chebyshev rational approx-
imation method (CRAM), which is a new matrix exponential method, the matrix exponential power series
with instant decay and a secular equilibrium approximations for short-lived nuclides, which is used in
ORIGEN, and three different variants of transmutation trajectory analysis (TTA), which is also known
as the linear chains method. The common feature of these methods is their ability to deal with thousands
of nuclides and reactions. Consequently, there is no need to simplify the system of equations and all nuc-
lides can be accounted for explicitly.

The methods were compared in single depletion steps using decay and cross-section data taken from
the default ORIGEN libraries. Very accurate reference solutions were obtained from a high precision TTA
algorithm. The results from CRAM and TTA were found to be very accurate. While ORIGEN was not as
accurate, it should still be sufficient for most purposes. All TTA variants are much slower than the other
two, which are so fast that their running time should be negligible in most, if not all, applications. The
combination of speed and accuracy makes CRAM the clear winner of the comparison.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Being able to accurately solve changes in the compositions of
materials under irradiation is important in many applications.
One particularly challenging application is in burnup calculations,
which aim at following the time development of material compo-
sitions and core parameters of a nuclear reactor.

There are two factors responsible for the difficulty. First, mate-
rial compositions and neutron flux affect each other leading to a
complex combined problem. This is typically handled by sequen-
tially solving neutronics and changes in material compositions
while assuming the other to remain constant. Second, irradiated
nuclear fuel contains thousands of different nuclides with widely
varying half-lives, resulting in an extremely large and stiff
problem.

Most of the nuclides are produced only in small amounts and
can be handled by lumping, i.e., representing a large number of
low importance or short-lived nuclides with one pseudo nuclide
that has suitably averaged properties. However, there are also a
few methods that can be used to solve the full system even when
all nuclides are explicitly represented. Such methods provide
greater flexibility and problem independence as the need to
average lumped nuclides is removed. They also directly solve the

proportions of those nuclides, which would otherwise be com-
bined to pseudo nuclides, simplifying result handling.

The equations governing decay and transmutation of an arbi-
trary mixture of N different nuclides in a homogenized material re-
gion can be written as

dxi

dt
¼ �keff

i xi þ
XN

j

beff
j;i keff

j xj for i ¼ 1; . . . ;N; ð1Þ

where xi is the atomic density of nuclide i; k eff
i the effective decay

constant of nuclide i, and beff
i;j the effective branching ratio from nu-

clide i to nuclide j. These are defined as

keff
i ¼ ki þ /

X
j

ri;j ð2Þ

and

beff
i;j ¼

bi;jki þ ri;j/

keff
i

; ð3Þ

where ki is the decay constant of nuclide i, / the one-group neutron
flux, ri,j the microscopic one-group cross-section for transmutation
of nuclide i to nuclide j and bi,j the branching ratio from nuclide i to
nuclide j, i.e., the fraction of natural decays of nuclide i that produce
nuclide j.

With the assumption of constant reaction rates during a time
step, the decay and transmutation equations are a system of linear
first order differential equations with constant coefficients.
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Numerous ways of solving such systems exist, but in burnup calcu-
lations the size and stiffness of the system render most of them
practically useless, especially when the number of nuclides is not
reduced by approximations.

2. Matrix exponential methods

The decay and transmutation equations, Eq. (1), can be written
in a matrix form d~x=dt ¼ A~x, where Ai;j ¼ �keff

i di;j þ b eff
j;i keff

j . The
solution to this equation is

~xðtÞ ¼ eAt~xð0Þ; ð4Þ

which employs the matrix exponential notation

eAt ¼
X1
m¼0

1
m!
ðAtÞm: ð5Þ

So-called matrix exponential methods are based on different
numerical approximations to the matrix exponential, which in a
general case cannot be evaluated exactly. Numerous methods have
been developed for evaluating the matrix exponential (Mole and
Van Loan, 2003), but only a few are applicable in burnup calcula-
tions, and even fewer when solving the full system.

2.1. CRAM

Chebyshev rational approximation method (CRAM) (Pusa and
Leppänen, 2010) is a new matrix exponential method that is based
on the observation that the eigenvalues of the depletion coefficient
matrix A appear to be clustered around the negative real axis. This
can be exploited by making a Chebyshev rational approximation of
the exponential function for the interval (�1,0]. The resulting ra-
tional function is then decomposed into a pole-residue form to
avoid numerical instability. When the denominator and numerator
orders are selected equal and even in the Chebyshev approxima-
tion, the poles form conjugate pairs and the imaginary parts cancel
out for a real valued variable. Thus, an order (k,k) approximation
becomes

ez � PkðzÞ
Q kðzÞ

¼ a0 þ
Xk

i¼1

ai

zþ hi
¼ a0 þ 2Re

Xk=2

i¼1

ai

zþ hi

" #
: ð6Þ

where Pk and Qk are polynomials of order k, whose coefficients have
been selected to minimize absolute deviation from exponential
function on the negative real axis, a0 is the limiting value of the
approximation at infinity, and ai and hi are the residues and poles.
When this approximation is applied to the matrix exponential in
Eq. (4) it becomes

~xðtÞ � a0~xð0Þ þ 2Re
Xk=2

i¼1

aiðAt þ hiIÞ�1

" #
~xð0Þ; ð7Þ

where the matrix inversions can be calculated efficiently thanks to
the sparse structure of the matrix A.

There is no reason to select any particular value of k as long as it
is even. Thus, the order of the approximation can be used to scale
the accuracy versus running time. Since the number of operations
required for an order (k,k) approximation scales linearly with k, a
wide range of values might be viable. However, only an order
(14,14) approximation is considered in this work following the
choice of Pusa and Leppänen (2010).

2.2. ORIGEN

ORIGEN (Croff, 1983, 1980a) is a well known and widely used
program for depletion and transmutation calculations. It is used
for solving depletion steps in numerous linked burnup codes such

as Monteburns (Posfon and Trellue, 1999) and MOCUP (Moore
et al., 1995). The more modern ORIGEN-S of the SCALE package also
uses the same method of solution (Hermann and Westfall, 2009).
While solving depletion steps is the most central function of ORI-
GEN, it also provides a wide range of other features including
stand-alone burnup calculations using pre-calculated cross-section
libraries.

The method of solution for depletion steps in ORIGEN is a power
series approximation of the matrix exponential with instant decay
and secular equilibrium approximations for handling short-lived
nuclides (Croff, 1980b).

First, contributions to the final concentration from short-lived
(keff
6 ln(0.001)/t, i.e., Teff

1=2 K 0:1t, where t is the step length) nuc-
lides present initially are calculated. This is done by constructing
for each nuclide all the populating chains consisting of short-lived
nuclides, and solving these chains in a similar way as in the TTA
methods described later. The contributions to final concentrations
of short-lived nuclides are saved and the contributions to long-
lived nuclides are added to the initial concentrations of those
nuclides.

Second, a reduced version of the coefficient matrix A in Eq.
(4) is constructed by assuming short-lived nuclides to decay in-
stantly,1 thus removing them from the system. The reduced sys-
tem is then evaluated by truncating the power series for the
exponential:

eAt ¼
X1
m¼0

ðAtÞm

m!
�
XM

m¼0

ðAtÞm

m!
: ð8Þ

The convergence and numerical stability problems usually encoun-
tered when using the power series (Mole and Van Loan, 2003) are
avoided because the reduced system does not contain the large ma-
trix elements associated with the short-lived nuclides.

Finally, the contributions from long-lived nuclides to short-
lived nuclides are solved by assuming these decay and transmu-
tation chains to be in a secular equilibrium at the end of the
step:

dxi

dt
¼
XN

i¼1

aijxj ¼ 0: ð9Þ

This results in a greatly reduced form of the system that is solved by
iterating

xkþ1
i ¼ 1

�aii

XN

j¼1
j–i

aijxk
j ; ð10Þ

where xi are the final concentrations obtained from the matrix solu-
tion for the long-lived nuclides and unknowns to be solved for the
rest. The final concentrations of short-lived nuclides are superposi-
tion of the contributions calculated from other short-lived nuclides
and from the long-lived nuclides.

3. Transmutation trajectory analysis

Transmutation trajectory analysis (TTA) (Cetnar, 2006), also
known as the linear chains method, is an alternative method for
solving the decay and transmutation equations. The core of the
method is that a complex web of decay and transmutation reac-
tions can be decomposed into a set of linear chains consisting of
all possible routes, or trajectories, through the web.

1 The approximation is actually more complex than just instant decay. There is an
additional correction that attempts to account for the effects of non-zero half-lives of
the removed nuclides by modifying the effective decay constants of their long-lived
parents. This feature is not mentioned in the documentations of ORIGEN.
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