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a b s t r a c t

The conditions of convergence in a modified Monte Carlo power iteration method to generate the eigen-
function with the second largest criticality eigenvalue, which was originally proposed by Booth, have
been defined with a different approach. In this work, the first and second eigenvectors composed of
two volume-integrated fission source intensities defined in two-partitioned regions are used for deriving
the convergence conditions. The conditions of convergence as shown by Booth are found to be true in the
limit of a small amplitude of the first eigenfunction. Following the method that uses two estimates of the
second eigenvalue defined in two-partitioned regions, a new method for removing the fundamental
mode eigenfunction from the fission source distributions has been developed. Because of the explicit
removal of the first eigenfunction, the validity of this method is convincing as a technique for obtaining
the second eigenfunction. Although this method needs the first eigenfunction and eigenvalue, and the
subtraction of the first eigenfunction from the fission source distribution, it has the advantage that the
adjoint mode calculation which is in general difficult for continuous energy Monte Carlo codes is not
required.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A method for obtaining the higher-order eigenfunctions in
Monte Carlo criticality calculations, which may be useful for nucle-
ar reactor analyses and nuclear criticality safety evaluations, will
enhance the versatility of the Monte Carlo method in the field of
nuclear applications.

An elaborate technique to obtain the higher-order eigenfunc-
tions in Monte Carlo criticality calculations were proposed in the
references (Booth, 2003, 2006; Booth and Gubernatis, 2008; Guber-
natis and Booth, 2008). For example, to obtain the second eigen-
function, the method partitions the whole space into two
regions. In the course of the power iteration, the component of
the eigenfunction in each region is adjusted such that the estimate
of the eigenvalue in each region is forced to be equal to each other
(Booth, 2003). The superiority of the method is its simplicity. The
lower-order eigenfunctions are not needed to estimate the high-
er-order eigenfunctions, which is an outstanding feature of the
method. In addition, it is worth noting that particles of negative
weights were introduced firstly in Monte Carlo criticality calcula-
tions. However, only a plausibility argument was given to the proof
that this method surely converges to the higher-order eigenfunc-
tions. Booth (2006) adopted another technique for higher-order
eigenvalues and eigenfunctions, which is different from Booth
(2003). Other subsequent recent papers (Booth and Gubernatis,
2008; Gubernatis and Booth, 2008) are extensions or applications

to the method in Booth (2006). However, the technique in Booth
(2003) is still fascinating because of its simplicity, and further
investigation on the technique is worth while. Thus, this paper at-
tempts to develop a new understanding as to the conditions re-
quired for convergence of the method in Booth (2003).

2. Review of power iteration for the largest eigenvalue

In the power iteration method for a fundamental mode eigen-
value calculation, the initial fission source distribution, which
may be far from the fundamental mode, is given at the beginning
of the calculation. The convergence of the fission source distribu-
tion toward the fundamental mode was already proved in many
literatures (Urbatsch, 1996; Naito and Yang, 2004). The ratio of a
higher-order eigenfunction’s magnitude to the fundamental
mode’s one attenuates at each power iteration, then the fission
source distribution converges to the fundamental mode. Let the fis-
sion source distribution and the ith mode eigenfunction be PðrÞ
and uiðrÞ; i ¼ 1;2; . . ., respectively. The fission source distribution
is given by

PðrÞ ¼
Z

Rf ðr; EÞ/ðr; EÞdE; ð1Þ

where
Rf ðr; EÞ = macroscopic fission cross-section of neutron energy E

at position r,
/ðr; EÞ = neutron flux of neutron energy E at position r.
The ith eigenvalue ki associated with the ith eigenfunction ui(r)

is ordered k1 > k2 P k3 P; . . . ; > 0 where the eigenvalues are
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assumed to be real and positive. Here, k1 is the fundamental mode
eigenvalue and called neutron effective multiplication factor keff.
An operator A, which is relevant to a single power iteration, is
introduced, then

AuiðrÞ ¼ kiuiðrÞ: ð2Þ

Because of completeness, an arbitrary fission source distribu-
tion P(r) can be expanded as a linear combination of the
eigenfunctions

PðrÞ ¼
X1
i¼1

aiuiðrÞ; ð3Þ

where ai is an amplitude of the ith eigenfunction. P(r) is normalized
at each iteration throughout the Monte Carlo calculation. For
example,

N ¼
Z
jPðrÞjdr; ð4Þ

where N is the number of particles per iteration. Applying the oper-
ator A to P(r) stands for obtaining the fission source distribution on
the next iteration

APðrÞ ¼
X1
i¼1

aikiuiðrÞ: ð5Þ

Since k1 > k2 P k3 P; . . . ; > 0, applying the operator A many
times has the limit as

lim
n!1

1
kn

1

AnPðrÞ ¼ a1u1ðrÞ; ð6Þ

where only the eigenfunction with the largest eigenvalue survives.
That is why the power iteration cannot lead to the higher-order
eigenfunctions without introducing some extra techniques for
obtaining the higher-order eigenfunctions.

3. Review of methods for obtaining the higher-order
eigenfunctions

3.1. Hotelling’s method for Monte Carlo calculations

Hotelling’s method is known as a technique for obtaining the
higher-order eigenfunctions (Hashimoto and Nishina, 1991). The
method removes the fundamental mode eigenfunction from P(r)
by making use of the adjoint eigenfunctions and the orthogonality
between the forward and adjoint eigenfunction. The orthogonality
isZ Z

/�mðr; EÞvðEÞ/nðrÞdr dE ¼ 0 for m–n; ð7Þ

where
/�mðr; EÞ = mth order adjoint flux,
vðEÞ = fission spectrum of energy E.
With this orthogonality, the amplitude of the first eigenfunction

a1 in Eq. (3) is given as

a1 ¼
Z Z

/�1ðr; EÞvðEÞPðrÞdr dE=
Z Z

/�1ðr; EÞvðEÞ/1ðrÞdr dE ð8Þ

The component of the first eigenfunction in Eq. (3) can be easily
removed from P(r) as

PðrÞ � a1u1ðrÞ: ð9Þ

Since the first eigenfunction is removed by applying Eq. (3)
each iteration, the fission source distribution converges toward
the second eigenfunction that has the second-largest eigenvalue.
This method, however, has two difficulties for Monte Carlo
calculations. First, a capability of the criticality calculation in

adjoint mode has been installed in no contemporary continuous
energy Monte Carlo code. Hotelling’s method could not be ap-
plied to continuous energy Monte Carlo calculations before
development of the adjoint mode calculation in continuous en-
ergy. Secondly, since eigenfunctions are represented by point
particles in Monte Carlo calculations, the integrations in Eq. (8)
and the pointwise subtraction in Eq. (9) are in general difficult
to conduct unless a technique similar to the point detector as
proposed by Booth (2003) or a discretization of space and energy
is introduced. Consequently, in view of the present status of the
Monte Carlo method, the use of Hotelling’s method seems not to
be suitable for obtaining the higher-order eigenfunctions in
Monte Calro criticality calculations.

3.2. Method using two estimates of the second eigenfunctions

A method proposed by Booth (2003) can obtain the second
eigenfunction via a modified power iteration without knowing
the first eigenfunction. This method partitions the space into two
regions RI and RII. Two k02s in the nth iteration are defined as

kIðnÞ
2 ¼ PðnÞI =Pðn�1Þ

I ; ð10Þ

and

kIIðnÞ
2 ¼ PðnÞII =Pðn�1Þ

II ; ð11Þ

where

Pðn�1Þ
I ¼

Z
RI

Pðn�1ÞðrÞdr; ð12Þ

Pðn�1Þ
II ¼

Z
RII

Pðn�1ÞðrÞdr; ð13Þ

PðnÞI ¼
Z

RI

APðn�1ÞðrÞdr; ð14Þ

PðnÞII ¼
Z

RII

APðn�1ÞðrÞdr; ð15Þ

and P(n�1)(r) is the fission source distribution in the (n � 1)th itera-
tion. It is preferable to partition the space according to the sign of
P(r). For example, P(r) > 0 in RI and P(r) < 0 in RII. If a partitioned
space consists of a positive and negative P(r), cancellation occurs
in the space integration, and part of the information on the fission
source distribution is lost. This leads to loss of accuracy and stability
of the Monte Carlo calculation for the second eigenfunction. How to
partition the space, however, might be arbitrary.

The method utilizes the property that kIðnÞ
2 ¼ kIIðnÞ

2 ¼ k2 when
PðrÞ / u2ðrÞ. When kIðnÞ

2 > kIIðnÞ
2 , the component in the region RI is

growing faster than in the region RII and vice versa. To keep the
component growing at the same rate, Booth proposes that the fis-
sion source distribution for the next iteration P(n)(r) be modified as

PðnÞðrÞ ¼ kIIðnÞ
2 =kIðnÞ

2

� �a
APðn�1ÞðrÞ for r 2 RI; ð16Þ

or

PðnÞðrÞ ¼ kIIðnÞ
2 =kIðnÞ

2

� �a
APðn�1ÞðrÞ for r 2 RII; ð17Þ

where a > 1. Then, after the modified fission source distribution
P(n)(r) gets renormalized as in Eq. (4), they are used as P(r) in the
next iteration. (The notations and minor details are changed from
Booth’s paper to be consistent with the following discussions.)
The approximate best value for a, which was obtained in the paper
by Booth via long derivation with some assumptions, would be

a ¼ k1=ðk1 � k2Þ: ð18Þ

Also, the range of a where convergence occurs is approximately
given by
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