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A pin power reconstruction method that is readily applicable to multigroup problems with superior accu-
racy is presented for applications involving rectangular fuel assemblies. It employs a two-dimensional
(2D), fourth order Legendre expansion of the source distribution that naturally leads to a group-decou-
pled, 2D semi-analytic solution of the neutron diffusion equation. The four surface average currents
and four corner fluxes are used as the boundary conditions to uniquely specify the homogenous solution.
The corner fluxes and source expansion coefficients are iteratively determined using the condition of cor-
ner point balance and the orthogonal property of the Lengedre functions. Corner discontinuity is incor-
porated in the calculation of the corner fluxes which turns out to be very effective in the cases of
enrichment zoning. The accuracy of the proposed method is assessed by performing the two-step core
calculations for the L336C5, C5G7MOX, and MOX core transient benchmark problems and then by com-
paring with the direct whole-core transport solutions. The results indicate that the proposed method is as
accurate as the fully analytic method and works well irrespective the number of groups. However, it is
also noted that somewhat larger errors are inevitable at the peripheral assemblies near the reflector in
which the error associated with a prioi generation of the homogenized cross-sections and form functions

is not trivial.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing need for multigroup reactor calculation,
there has been renewed interest in the multigroup nodal codes
(Bahadir et al., 2005) and methods (Aragones et al., 2007; Yoon
and Joo, 2008) in recent years. Multigroup capability is needed
for complex core designs or highly leaking cores in which a priori
few-group condensation can suffer large errors due to the consid-
erably different spectrum actually realized in the core. Examples
are heavily mixed oxide (MOX) loaded cores and gas cooled reactor
cores as well as fast reactor cores.

In the multigroup core calculation, the transverse-integrated
nodal methods (TINMs) are normally chosen because of their supe-
rior calculation efficiency and accuracy. Note that although the
multi-dimensional nodal methods such as the analytic function
expansion method (Noh and Cho, 1994), which do not involve
transverse-integration, are in principle more accurate than TINMs,
there is no strong need for such methods because the difference in
accuracy between the two classes of nodal methods is negligible as
long as four nodes per assembly are used in the nodal calculation
as required to capture properly the intra-nodal burnup distribu-
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tion. Once a TINM is employed in the nodal core calculation, a
two-dimensional flux calculation need to follow the nodal calcula-
tion in order to reconstruct the pin power distribution. Although
the reconstructed pin power distribution obtainable in the stan-
dard two-step core calculation procedure may not be as accurate
as the direct pin-by-pin transport solution, sufficiently accurate
pin power distributions can be obtained as long as a sophisticated
reconstruction method and a nodal method are implemented. This
paper deals with a new accurate method for pin power reconstruc-
tion which can be applied readily to multigroup problems.

There are numerous pin power reconstruction methods devel-
oped for few-group problems. These methods differ mostly in
how to represent and generate the homogeneous flux. In earlier
days, two-dimensional polynomials (Koebke and Wagner, 1977)
were used in the representation of the intranodal flux distribution
and later exponential functions were introduced to augment the
thermal flux variation (Koebke and Hetzelt, 1985; Rempe et al.,
1988). More recently, analytic functions were used in both energy
groups (Boer and Finnemann, 1992). The analytic method employs
the analytic solution of the two-dimensional (2D) Helmholtz equa-
tion satisfying a given set of boundary conditions in an isolated
two-dimensional geometry. The analytic solution renders superior
accuracy compared to polynomial based methods. As the boundary
conditions, Boer and Finnemann used four surface average fluxes
and four corner fluxes per energy group (Bder and Finnemann,
1992).
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The use of surface fluxes, however, does not guarantee that the
resulting two-dimensional homogenous solution satisfy the nodal
balance condition given by the surface currents and the node-aver-
age flux determined in the nodal calculation. Therefore, the 2D
solution is not fully consistent with the nodal solution. We had
introduced another analytic method which uses the four surface
currents instead of the surface fluxes to produce a consistent 2D
solution (Joo et al., 1999). Note that once the four surface currents
used as the boundary condition for the solution of the 2D neutron
diffusion equation, the average of the resulting 2D flux distribution
is guaranteed to be the same as the node average flux of the nodal
solution. The analytic 2D solution method is, however, not readily
applicable to multigroup(MG) problems because of the diagonal-
ization problem of the G x G 2D neutron diffusion equations.

Bahadir and Lindahl (2006) recently introduced a multigroup
pin power calculation method which involves submesh solutions
of the SIMULATE-4 code. In this method, an assembly mesh is di-
vided into N x N submeshes and four exponential functions,
erxX e~tX elyy and e, augmented by quadratic polynomials are
used to approximate the 2D intranodal flux shape. The flux repre-
sentation, however, lacks the cross-terms and thus cannot be a
good approximation for large node sizes. Nonetheless, since the
primary purpose of the submesh method of the SIMULATE-4 is
rehomogenization which requires smaller submeshes (typically
N =5), the low order approximation may not be a significant prob-
lem. However, for the traditional nodal method which does not use
the submesh scheme, a better 2D solution method that is readily
applicable to MG problems is needed. In order to meet this need,
a 2D semi-analytic solution is derived in this paper by introducing
a 2D Legendre function expansion of all the source terms.

In the following, the basic formulation of the 2D semi-analytic
solution is derived first which employs four surface average currents
and four corner fluxes as the boundary condition in order to retain
consistency with the nodal solution. Since the corner fluxes need
to be newly determined in the 2D flux calculation, a consistent meth-
od for determining the corner fluxes by accounting for corner discon-
tinuity factors (CDFs) is developed as well. The source expansion
method basically requires an iterative scheme to approximate the
source distribution from the semi-analytic solution. In Section 3,
the iterative calculation scheme is described together with the
whole calculation sequence of generating the heterogeneous pin
power distribution. In Section 4, the performance of the proposed
method is first examined for a typical two-group (2G), 2D pin power
benchmark problem L336C5 (Cavarec et al., 1994) and then for two
MG problems: the C5G7 benchmark (Lewis et al., 2001) and a realis-
tic MG MOX core problem given in the MOX transient benchmark
(Kozlowski and Downar, 2006). Comparisons with the heteroge-
neous solution or the direct whole-core transport solutions will be
made to assess the pin error errors.

2. Semi-analytic solution with 2D source expansion

Given the finite number of boundary conditions such as four
surface average currents and four corner fluxes, a complete ana-
lytic solution to the 2D MG neutron diffusions can be obtained in
principle irrespective of the number of groups through the diago-
nalization process which removes the group coupling between
the groupwise neutron diffusion equations. The analytic solution
for each modal flux then can be obtained with the same number
of terms as the boundary conditions. In our choice of boundary
conditions, the analytic solution for each modal flux consists of
eight terms. However, since the diagonalization process is cumber-
some and the analytic solution would be difficult to apply to find
groupwise corner fluxes, we here seek semi-analytic solution by
decoupling the group dependence.

By the semi-analytic solution, it is meant that the analytic solu-
tion is obtained for the 2D neutron diffusion equation after moving
all the source terms to the right hand side (RHS) and then approx-
imating the source distribution by a polynomial. By the group
decoupling which is achieved by treating the source distribution
as known from the previous iterative solution, the analytic solution
can be obtained easily for each group as a combination of an expo-
nential homogeneous solution and a polynomial particular solu-
tion. Because of the polynomial expansion with a finite number
of terms, however, the semi-analytic solution would always be less
accurate than the fully analytic solution. The accuracy of the semi-
analytic solution would increase as the number of terms in the
source polynomial increases.

The homogeneous solution of the 2D neutron diffusion equation
is the solution of the Helmholtz equation which consists of an infi-
nite number of cosh x(xcos 6 + ysin ) and sinh #(x cos 0 + y sin 0)
function pairs with an arbitrary angle 6. With a finite number of
boundary conditions, however, specific values of o need to be cho-
sen. Boer and Finnemann (1992) chose 0°, 45°, 90° and 135° for 0 to
associate the coefficients of the homogeneous solution coefficients
with the surface average and corner fluxes that constitute a total of
8 boundary conditions. The same homogenous solution form will
be used in the following derivation of the 2D semi-analytic
solution.

2.1. Two-dimensional semi-analytic solution

After integrating the 3D neutron diffusion equation axially over
a plane of thickness, h,, the following 2D balance equation is ob-
tained for each group with all the source terms moved to the right
hand side (RHS):
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where the axial transverse leakage is defined as Lg(x,y) =
hlz(];z(x,y) —jgz(x.,y)) in term of the currents at the top and bottom
surfaces of the plane and / is the inverse of the multiplication factor.
The entire RHS term can be approximated by a polynomial of two
spatial coordinate variables. The polynomial for a 2D shape might
be iteratively updated. With such a polynomial approximation,
the solution of Eq. (1) would be obtained straightforwardly for a
square node whose width is h.

Since it is advantageous to use the Legendre polynomial for the
polynomial approximation owing to its orthogonal property, we
first normalize the independent variable such that it varies from
—1.0 to 1.0 in the node. This leads to the following equation with
the group index g omitted:
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where ¢ =2y = 2% and Q(¢&,n) represents the distribution of the
entire sources. As the polynomial approximation to the source dis-
tribution, we use a quartic polynomial given in terms of Legendre
polynomials:
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where P;(¢) is the ith order Legendre polynomial. Note that this 15-
term polynomial contains fourth order cross-terms such as
P1(&)P3(n) and P,(&)Po(n) and represent a quartic variation in each
direction. In the following, it will be assumed that the source term
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