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a b s t r a c t

The present work deals with the development of a direct simulation strategy for solving the motion of
spherical particles in a Bingham liquid. The simulating strategy is based on a lattice-Boltzmann flow
solver and the dual-viscosity Bingham model. Validation of the strategy is first performed for single
phase (lid-driven cavity flow) and then for two phase flows. Lid-driven cavity flow results illustrate
the flow’s response to an increase of the yield stress. We show how the settling velocity of a single
sphere sedimenting in a Bingham liquid is influenced by the yield stress of the liquid. The hydrodynamic
interactions between two spheres are studied at low and moderate Reynolds number. At low Reynolds
number, two spheres settle with equal velocity. At moderate Reynolds number, the yield effects are
softened and the trailing sphere approaches the leading sphere until collision occurs.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Bingham liquids, a special subclass of viscoplastic liquids, pos-
sess a yield stress which must be exceeded before the liquid shows
any significant deformation. By virtue of its yield stress, a Bingham
liquid is capable of trapping an embedded particle for a long time.
For example, drilling liquids used in petroleum industry posses a
yield stress and prevent the settling of rock debris when their circu-
lation is stopped (Peysson, 2004). The presence of a yield stress in
various industrial liquids is critical to solid–liquid suspensions. In
oil sand operations (Masliyah, Zhou, Xu, Czarnecki, & Hamza, 2004),
clay particles get surface activated in the presence of water and
make a complex clay–water suspension. This complex suspension
possesses a yield stress which is relevant for the design, operation
and efficiency of oil sands processing, especially in those parts of
the process related to separation and to tailings. If the net gravity
force acting on inert particles (sand, bitumen drops) is not enough
to overcome the yield stress, they are trapped in the clay network
hindering gravity based separation.

Research studies focused on spheres sedimenting in Bing-
ham liquids date back several decades. Ansley and Smith (1967)
postulated the shape and extent of yielded/unyielded regions sur-
rounding the sphere using slip line theory. In a classical work, Beris,
Tsamopoulos, Armstrong, and Brown (1985) numerically deter-
mined the velocity field, pressure field, shape of the yield surfaces
and drag coefficient for the creeping flow around a sphere in an
unbounded Bingham liquid. Blackery and Mitsoulis (1997) reported
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drag coefficients for bounded flows with various tube/sphere diam-
eter ratios. More recently Liu, Muller, and Denn (2002) and Yu and
Wachs (2007) obtained the shape and extent of yielded/unyielded
regions for such flow systems. Turning the attention towards sed-
imentation of more than one sphere, one finds few results for
Bingham liquids, probably due to the complexity associated with
two sphere motion in addition to the discontinuous nature of
Bingham liquid model. Liu, Muller, and Denn (2003) numerically
investigated the creeping flow of two identical spheres falling
collinearly along the axis of a circular cylinder in a Bingham liq-
uid. They calculated the yield surfaces as a function of the ratio of
the center to center distance over the radius of the spheres and
further predicted a plug like (unyielded) region between the two
spheres along the symmetry axis. In an experimental work, Merkak,
Jossic, and Magnin (2006) reported an appreciable hydrodynamic
interaction between two spheres falling one above the other. They
proposed drag coefficient correlations and showed that the yield
effect of viscoplastic liquids reduces the degree of interaction com-
pared to sedimentation in Newtonian liquid. Yu and Wachs (2007)
examined the motion of two spheres translating along the axis of a
tube at low Reynolds number and predicted a higher velocity of two
spheres than a single sphere due to the hydrodynamic interaction.

One of the difficulties encountered in implementing the Bing-
ham model in a computer code is its non-differentiable form. There
are mainly three approaches which have been used in the litera-
ture to counter these problems: the dual-viscosity model (Beverly
& Tanner, 1992; O’Donovan & Tanner, 1984), regularization meth-
ods (Mitsoulis & Zisis, 2001; Papanastasiou, 1987), and variational
inequality based methods (Vola, Boscardin, & Latche, 2003; Yu &
Wachs, 2007). The first two methods approximate the Bingham
model by considering the solid region as a highly viscous mate-
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rial. The variational inequality method is rigorously equivalent to
the original Bingham model, and is implemented by introducing
Lagrange multipliers.

The present work concentrates on the sedimentation of parti-
cles in Bingham liquid using the lattice-Boltzmann method (LBM)
as flow solver. First we discuss and analyse the results of single
sphere sedimentation at low Reynolds number. We then investi-
gate the hydrodynamic interaction between the two spheres falling
along the axis of symmetry at low and moderate Reynolds num-
ber. Hydrodynamic interaction is interpreted in terms of settling
velocity, flow field and attraction between the spheres. The (bench-
mark) results presented in this paper are meant to assess the
accuracy and potential of the computational method so that (in
future work) the method can be used for flow systems relevant to
industrial and environmental processes, such as the simulation of
dense solid–liquid suspensions involving Bingham liquids.

This paper is organized as follows: in Section 2 a brief intro-
duction to LBM, the Bingham model and dimensionless numbers is
provided. Validation of the numerical procedure is accomplished
by comparing results for lid-driven cavity flow with results from
the literature (Section 3). In Section 4 we study the single sphere
sedimentation in Bingham liquid in a confined domain and report
the effects of yield stress on the settling velocity. In Section 5, we
examine the sedimentation of two spheres (one above the other)
in Bingham liquid at low and moderate Reynolds number. The con-
cluding remarks are provided in Section 6.

2. Numerical model

2.1. Flow solver

The lattice-Boltzmann method is a well established and fre-
quently used method for simulating liquid flows. In principle it
has a second order accuracy in space and time and is particu-
larly regarded an efficient flow solver for flows involving interfacial
dynamics and complex geometries (Chen & Doolen, 1998). LBM
originated from lattice gas automata in which liquid particles are
distributed on a lattice of nodes. Each liquid particle has certain
directions of velocities at each node. At each time step a liquid
particle is involved in two sequential processes: streaming and
collision. In the streaming process, the liquid particle moves from
one node to the nearest node in the direction of its velocity and in
collision it interacts with other liquid particles reaching the same
node and changes its velocity as per collision rules. In this work, we
make use of the formulation by Eggels and Somers (1995) which
is a D3Q18 model (three-dimensional, 18 velocities). In LBM the
units of distance and time are the lattice spacing and the time step,
respectively. All the liquid properties and flow variables are scaled
to dimensionless quantities within certain ranges (e.g. for density
and kinematic viscosity: �∼ 8, 0.25 >� > 10−5) (Eggels & Somers,
1995). The bounce-back scheme is a popular way to mimic no-slip
boundary conditions at plane walls. In this scheme, the liquid par-
ticle is reflected back to the node it comes from. Explicitly applying
zero velocity on boundaries is an alternative to retrieve the no-
slip condition. No-slip boundary condition at a curved boundary is
achieved by a forcing method (Derksen & Van den Akker, 1999),
also known as immersed boundary method.

2.2. Bingham model

Viscoplastic liquids possess a yield stress (�0) which must be
exceeded before the fluid shows any significant deformation. The
Bingham model, one of the simplest rheological models, is used
to describe the flow properties of liquid with a yield stress �0. The
deformation rate remains zero and the material behaves like a solid
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Fig. 1. One-dimensional representation of dual-viscosity Bingham model.

until the stress exceeds the yield limit of the liquid. In a general-
ized manner, the constitutive equations for a Bingham liquid can
be written as

�ij = 2
(
�0

�̇
+�p

)
dij |�|> �0 (1)

dij = 0 |�|< �0 (2)

In the above expressions, �ij is deviatoric part of whole stress

tensor �ij, �̇ is the deformation rate (�̇ =
√
dijdij), dij is the rate

of deformation tensor [1/2(( ∂ ui/∂ xj) +(∂ uj/∂ xi))], �p is the plastic
viscosity, and |�| is the magnitude of the shear stress (|�| = √

�ij�ij).
In the present work, a dual-viscosity model is used to mimic

Bingham liquids (Beverly & Tanner, 1992) because of its less
complex structure and easy implementation within the lattice-
Boltzmann scheme, which essentially is a viscous flow solver. In
this model the region around zero shear rate is characterized by
a highly viscous material with viscosity �0. At higher shear the
actual Bingham rheology is represented by a much lower plastic
viscosity �p. The one-dimensional dual-viscosity Bingham rheol-
ogy is shown in Fig. 1. The transition (from high to low viscosity)
gives rise to a critical shear rate �̇c = �0/(�0 −�p). When the shear
rate (�̇) becomes greater than critical shear rate, material is consid-
ered yielded. Thus the criterion of yielded and unyielded regions is
defined as

�̇ > �̇c → yielded (3)

�̇ ≤ �̇c → unyielded (4)

In the dual-viscosity model, the apparent viscosity (�a) and
shear stress (�ij) of the material are written as

�a = �0 �̇ ≤ �̇c (5)

�a = �p + �0

�̇
�̇ > �̇c (6)

�ij = 2�adij (7)

2.3. Dimensionless numbers

As the two dimensionless numbers that govern the Bingham
liquid flow system we chose a Reynolds number and a Bingham
number:

Reynolds numberRe = �f UcLc
�p

(8)
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