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a  b  s  t  r  a  c  t

Process  data  measurements  are  important  for process  monitoring,  control,  optimization,  and  manage-
ment  decision  making.  However,  process  data  may  be heavily  deteriorated  by  measurement  biases  and
process  leaks.  Therefore,  it is  significant  to simultaneously  estimate  biases  and  leaks  with  data  reconcil-
iation.  In this  paper,  a novel  strategy  based  on  support  vector  regression  (SVR)  is proposed  to  achieve
simultaneous  data  reconciliation  and  joint  bias  and  leak  estimation  in  steady  processes.  Although  the
linear  objective  function  of  the  SVR approach  proposed  is  robust  with  little  computational  burden,  it
would  not  result  in  the  maximum  likelihood  estimate.  Therefore,  to  ensure  accurate  estimates,  the  max-
imum likelihood  estimate  is  applied  based  on the  result  of  the  SVR  approach.  Simulation  and  comparison
results  of  a linear  recycle  system  and a nonlinear  heat-exchange  network  demonstrate  that  the pro-
posed  strategy  is effective  to  achieve  data  reconciliation  and  joint  bias  and  leak  estimation  with  superior
performances.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The measurement data of process variables usually contain ran-
dom errors, which make the data not obey process constraints
defined by the mass and energy balances. Therefore, data recon-
ciliation should be applied to obtain accurate estimates of process
variables based on the measurement data to support process
control, optimization and monitoring well. However, data recon-
ciliation results are probably corrupted heavily by the presence
of gross errors like biases in measurements and leaks in process.
Therefore, the effects of biases and leaks should be reduced or even
eliminated if possible when applying data reconciliation. Many
methods have been developed to address data reconciliation and
gross error detection. The most widely used methods for data rec-
onciliation and gross error detection are the global test (GT) (Reilly
& Carpani, 1963), the measurement test (MT) (Mah  & Tamhane,
1982), the nodal test (NT) (Reilly & Carpani, 1963), the generalized
likelihood ratio (GLR) (Narasimhan & Mah, 1987) and the princi-
pal component test (PCT) (Tong & Crowe, 1995). Several strategies
were developed to identify multiple biases, such as serial elimi-
nation (Rosenberg, Mah, & Iordache, 1987), serial compensation
(Narasimhan & Mah, 1987), simultaneous or collective compensa-
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tion (Kim, Kang, Park, & Edgar, 1997). Some new methods have been
applied to real industrial processes, which range from statistical
test methods to robust statistics methods (Arora & Biegler, 2001;
Wang & Romagnoli, 2003; Wongrat, Srinophakun, & Srinophakun,
2005), from sequential or combinatorial methods to simultaneous
data reconciliation and gross error detection methods. However,
few methods could achieve simultaneous data reconciliation and
joint bias and leak estimation, such as GLR and the simultaneous
estimation of gross errors (SEGE) method (Sanchez, Romagnoli,
Jiang, & Bagajewicz, 1999). Although the latter one usually has a
better performance, it will be too much computational overhead
in a large scale system as it will test too many possible combina-
tions of suspected variables, and the test procedure of which is only
suitable for linear systems.

Simultaneous data reconciliation and gross error estimation
can be addressed as a model identification and parameter estima-
tion problem, and the Akaike information criterion (AIC) (Akaike,
1974) has been applied, which is supported by an earlier work
(Yamamura, Nakajima, & Matsuyama, 1988), where AIC is applied
to identify biased measurements in a least squares framework for
gross error detection. Due to the combinatorial nature of the prob-
lem attempted, a branch and bound method is suggested to solve
the problem. There also exists some related work. A mixed integer
linear program (MILP) approach has been presented (Soderstrom,
Edgar, Russo, & Young, 2000), which is similar to AIC in the form.
However, this approach is computationally expensive as it requires
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a discrete decision with two binary variables for each measure-
ment. Arora and Biegler (2001) argued that the mixed integer
non-linear program (MINLP) approach is a direct minimizer of
AIC. However, the fixed penalty coefficient in AIC makes it inap-
propriate to penalize detecting too many gross errors especially
in a small example usually encountered in data reconciliation
problem. Furthermore, these approaches have not yet addressed
process leaks. Similar to AIC, there are some other criterions such
as Bayesian information criterion (BIC), whose penalty coefficient
changes with the sample size. Although the penalty for additional
parameter is stronger than that of AIC, BIC still cannot solve the
problems encountered by AIC well for data reconciliation, such
as computational burden and process leaks. Therefore, a novel
approach is needed, which should be more effective to address joint
bias and leak estimation with robustness and little computational
load.

The support vector algorithm is a nonlinear generalization of
the Generalized Portrait algorithm developed in Russia in the six-
ties. As such, it is firmly grounded in the framework of statistical
learning theory, or Vapnik–Chervonenkis theory (known as VC the-
ory), which has been developed over the last three decades by
Vapnik, Chervonenkis and others. According to statistical learning
theory, minimizing empirical risk, which will lead to overfitting
and thus bad generalization properties, is replaced by minimizing
regularized risk with adding a capacity control term to objective
function. Recently, the support vector regression (SVR) approach
has been introduced to address simultaneous data reconciliation
and measurement biases detection problem (Miao, Su, & Chu, 2009;
Miao, Su, Xu, & Chu, 2009) benefiting from its robust and excellent
nature of classification to efficiently distinguish biased measure-
ments from normal ones. In this paper, with considering process
model with leaks and its complexity, SVR approach is extended to
deal with simultaneous data reconciliation and joint bias and leak
estimation. In order to reduce the computational load led by MINLP
and to increase robustness to bias and leak, a simplified linear
objective function is used in the proposed SVR method according to
a basic SVR algorithm named ε-SVM (Scholkopf, Smola, Williamson,
& Bartlett, 2000). Although the linear objective function is robust to
biases and leaks with less computational burden, it will not result in
the maximum likelihood estimate. Therefore, the maximum likeli-
hood estimate is applied based on the result of the SVR approach to
guarantee accurate estimates. Meanwhile, it can be easily revealed
that the combinatorial search and test of measurement biases and
process leaks in the SEGE approach can be included in the frame-
work of our approach. Therefore, our approach, like the SEGE, could
give results that are consistent with the gross error equivalency
theory (Bagajewicz & Jiang, 1998). Meanwhile, the MILP approach
could be included in the proposed SVR approach.

In this paper, a linear recycle system and a nonlinear heat-
exchange network are used for case study. In the linear recycle
system case study, the effect of penalty on the power of detect-
ing biases and leaks for data reconciliation are studied on AIC, BIC
and the SVR approach, and a suggestion of penalty tuning proce-
dure for the SVR approach is made. Then the performances of the
SVR approach are demonstrated and compared with those of MILP
approach and the extended MINLP approach based on AIC on the
linear recycle system. In the second case study, we  try to solve a
nonlinear data reconciliation problem with process leaks and mea-
surement biases on a heat-exchange network, and compare the
performances of the SVR approach with a robust data reconciliation
approach based on generalized T (GT) distribution to demonstrate
the efficiency of our approach on nonlinear system. The simulation
and comparison results in both case studies show that the proposed
method based on SVR approach is robust, effective and accurate for
data reconciliation with joint measurement bias and process leak
estimation.

2. Mixed integer program approaches with AIC for data
reconciliation

The general form of simultaneous data reconciliation and gross
error detection can be described as following,

min
x,u,p
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where F(·) is the objective function, xM is the set of measurement
data of the corresponding variable set x, p is the set of parameters, u
is the set of unmeasured variables, h(·) is the set of equality model
constraints, the subscript i denotes the ith element in the corre-
sponding set, the superscripts L and U denote the lower and upper
bounds of the corresponding variables, respectively.

In the formula given above, data reconciliation and bias detec-
tion can be addressed as a model identification and parameter
estimation problem, where estimated parameters p could be seen
as measurement biases and process leaks. Meanwhile, it is usually
a small example problem as shown in (1) because there is usually
only one set of measurements obtained for data reconciliation. If
more than one model could be fitted to the data set, it is necessary
to identify the best model and its parameters by suitable model
evaluation criteria. AIC has been used for this purpose, which takes
the form of a penalized likelihood. It is given by,

AIC = −2log(L(�̂)) + 2k (2)

where L(�̂) is the maximized likelihood function, and k is the num-
ber of free parameters in the model. The model with minimum AIC
value is chosen as the best model to be used.

Based on the assumption that the random errors possess a nor-
mal  distribution after removing the gross errors, Yamamura et al.
(1988) first introduced AIC into data reconciliation and gross error
detection problem for a linear system. Through dividing the set of
measurement values into sets with gross errors and without gross
error, a branch-and-bound strategy was  proposed to solve the prob-
lem. The procedure of the branch-and-bound strategy for linear
system was translated by Arora and Biegler (2001) into a MINLP
with binary variables identifying the variables with gross errors,
the formula of which is as the following,
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(3)

where n is the number of measured variables, xi is the ith variable
in the measured variable vector x, xM

i
is the measurement of the

ith variable, �i is the standard deviation of the ith measurement,
�i is the magnitude of bias in the ith measurement, ri is a binary
variable denoting existence of bias in the ith measurement, zi is a
binary variable for the sign of the ith bias, A is the matrix for linear
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