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a b s t r a c t

The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles
and the estimate of power by battery management systems provides operating information for drivers. In
this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency
of power capability and an operating map of power capability is presented. Both parametric and non-
parametric models are established in conditions of temperature, state of charge, and cell resistance to
estimate the power capability. Six cells were tested and used for model development, training, and
validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures
and were used for model parameter identification and model training. The other three were used for
model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and
that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and
0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge
conditions, while the non-parametric model has better estimation result in high temperature and state of
charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power
capability estimation.

© 2016 Published by Elsevier Ltd.

1. Introduction

Due to the shortage of oil energy and the raising of public
environmental awareness [1], electric vehicles (EVs) are becoming
more and more popular [2]. Hybrid electric vehicles (HEVs) are
claimed to be the most energy efficient and to produce the lowest
amount of greenhouse gas emissions compared to electric vehicles
(EVs) and plug-in hybrid electric vehicles (PHEVs) [3]. The hybrid
architecture is exploited to achieve better fuel economy and lower
exhaust emissions [4]. HEVs improve on the traditional internal
combustion engine (ICE) vehicle due to its ability to reduce the
emissions of greenhouse gases [5]. With lithium-ion batteries in
the vehicle's power system, an HEV combines an ICE and an electric
motor. To ensure that the HEV operates at the maximum efficiency,
the ICE provides average power at constant speed area, while the

electric motor which is usually powered by batteries satisfies the
high power demand by delivering short, high power discharges and
charge current pulses during a vehicle's acceleration, gradient
climbing and regenerative braking [6]. As one of the critical com-
ponents, battery performance determines the safety, reliability and
efficiency of the vehicle system [7]. Battery's power capability af-
fects the vehicle's acceleration and maximum speed performance
[8] as well as braking performance [9]. Power capability is the
ability of a battery to accept or deliver power at a given time [10]. If
the battery cannot deliver enough discharging power, the vehicle
may fail to restart or inhibit acceleration. If the charging power
during a vehicle's regenerative braking operation is beyond the
acceptable range for the batteries, the converted energy from the
vehicle's kinetic energy would bewasted. Moreover, things may get
worse that the charging current may exceed the battery's design
limit and result in high current if battery management systems
(BMS) did not set a proper current limit. This may cause thermal
issues due to rapid heat generation and temperature rise. It may
reduce the battery's lifespan by damaging the internal chemical
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materials further. Since batteries' power capability directly affects
the safety and reliability of HEV operation, an overview of usable
power will be significantly helpful. A power performance map
which presents batteries' usable power in terms of the operation
conditions (i.e. temperature, voltage, available capacity) will pro-
vide a guide to fully utilize the batteries to the extremes while
maintaining safety. Moreover, accurate estimate of battery power
capability provides a basis for the strategy of vehicle power man-
agement [11]. Optimal power and energymanagement [12] for HEV
and PHEV is able to utilize two sources, ICE and batteries, efficiently
and thus achieve the best fuel economy [13]. Therefore, estimating
power capability accurately and generating a power performance
map are crucial functions of the BMS.

Guidelines for batteries used as an auxiliary propulsion source
in HEVs have been established by the US Department of Energy
(DOE) for use in the Partnership for a New Generation of Vehicle
(PNGV) program [14]. HEV duty cycle and battery requirements are
described by Nelson [15]. The power requirements for batteries in
HEVs are specified in terms of a characteristic time instead of a
maximum C-rate [16]. To note, a C-rate is a measure of current at
which a battery is discharged relative to its maximum capacity.
Idaho National Engineering & Environmental Laboratory (INEEL)
proposed an evaluation method for determining a battery's power
capability called the hybrid pulse power characterization (HPPC)
test [17]. Using this method, it is easy to determine a battery's
power capability, which is represented by 10-s pulse discharge or
charge peak power regarding different factors such as ambient
temperature or state of charge (SOC) of the battery. SOC is a mea-
sure of the amount of charge stored in a battery at the present
moment. In addition, the real driving conditions of HEVs can be
simulated through changing the test control conditions based on
conducting the HPPC test in laboratory environments. Subse-
quently, detailed information of a battery's power capability can be
imported into a BMS to provide an optimal operation guideline for
HEVs.

Real-time power demands usually vary with the instantaneous
working condition of the HEV. History of power consumption,
speed changes and road information can be used to estimate the
real-time state of power capability (SOP) of the HEV [18]. To note,
SOP is used to measure that the ICE and battery can meet the real-
time power demand or not. A variety of studies have been con-
ducted on the online prediction of SOP [19], which is commonly
indicated by peak power [20]. The definition of peak power as the
maximum discharge or charge power that can be maintained
constant for10 s within the operational design limits is proposed by
Plett [10]. Additionally, he presented a dynamic cell model for
available power prediction of battery packs taking account current
limit, voltage limit, and SOC limit. The difficulty is that this dynamic
cell model is hard to simulate for on-board applications due to the
low efficiency and high cost of complicated computation. To date,
there are several approaches for online peak power prediction.
Xiong et al. [9] proposed a dynamic electrochemical-polarization
(EP) model based on multiple parameters. A data-driven adaptive
SOC and SOP joint estimator was established to which the adaptive
extended Kalman filter (AEKF) was subsequently applied for more
convergent results [21]. Efforts to improve the model, such as
higher estimation accuracy as well as parameter updates requiring
less computation, were made by the authors [22]. Pei et al. [23]
presented a training-free parameter and state estimator for on-
line peak power estimation. An equivalent circuit model was used
and a dual extended Kalman filter (DEKF) was applied for online
parameter identification. Jiang et al. [24] presented the testing
methods for battery peak power with comparative analysis. In
addition, experiments were designed to verify the accuracy of the
peak power estimation results in this work. These studies focused

on real-time instantaneous power state prediction of batteries.
However, the battery power supply can drop to zero almost
instantly once its peak power exceeds the constraint boundary,
such as current or voltage limitation, in accordance with the BMS
control strategy. The ICE cannot take over providing power
immediately since it takes time for the engine to respond. Thus the
vehicle would stop moving, which is known as the “car frustration
phenomenon” due to the instant disappearance of momentum.
This phenomenon would degrade the user experience of driving
and could also affect the braking performance of the vehicle, thus
leading to traffic accidents. Therefore, estimating exact power
capability of an HEV battery and implement a power performance
map into BMS in advance can present a view of real-time usable
power while driving to guide optimal operation as well as to
guarantee the safety and reliability of HEVs.

The investigation of power capability was specified for lithium-
ionmanganese oxide batteries (LiMn2O4), which are widely used in
HEVS. As a bulk phase, LiMn2O4 possesses excellent rate capability
[25]. Moreover, it is highly favored as a positive electrode due to its
merits such as lower cost, lower toxicity, and superior safety than
V-, Co-, or Ni-based electrodes [26]. In this study, a 10-s pulse
discharge peak power was used to represent the power discharge
capability of batteries. Similarly, corresponding application can be
adopted for the charging case. Temperature dependency of power
capability was investigated based on the experimental results of
HPPC test. Both a parametric model and non-parametric model
using data-driven approach were built to accurately estimate the
power capability of LiMn2O4 batteries. A key advantage is that our
models are only based on the data from several parameters whose
real-time states are easily obtained while comparing with other
model-based peak power estimators, which have more difficulty
obtaining real-time model parameters accurately, such as the
equivalent circuit model-based estimator or the electrochemistry
model-based estimator. The performance of two proposed models
were compared and evaluated via a list of statistical metrics under
different temperatures and different SOCs.

The reminder of the paper is arranged as follows. Section 2
demonstrates an experimental platform and tests under varied
ambient temperatures for power capability determination. Section
3 analyzes the variation of test samples and illustrates the tem-
perature dependency of power capability. An operating map of
power in terms of temperature and SOC are presented as well. In
section 4, both the parametric model and non-parametric model
using data-driven approach are used for power estimation. The test
data of three battery cells are used for model parameter identifi-
cation or model training. In section 5, the model validation results
of two models are compared using statistical measures. Detailed
discussion is presented including the applicability of two models.
Finally, conclusions and suggestions for future work are given in
section 6.

2. Experiments

The experimental platform is shown in Fig. 1. It consisted of 5
parts: (1) six lithium-ion LiMn2O4 battery cells; (2) a temperature
controlled chamber; (3) Digatron battery test system; (4) a data
logger to record the battery data; and (5) a PC to give the orders and
monitor data information. The test samples were composed of a
graphite negative electrode and a lithium manganese oxide (LMO)
positive electrode. Their basic specifications are given in Table 1.
The open circuit voltageeSOC test and HPPC test at various ambient
temperatures were conducted for the test samples. During the
tests, data (current, voltage, and temperature of each cell) was
measured and logged in1 second intervals.

F. Zheng et al. / Energy 113 (2016) 64e75 65



Download English Version:

https://daneshyari.com/en/article/1730721

Download Persian Version:

https://daneshyari.com/article/1730721

Daneshyari.com

https://daneshyari.com/en/article/1730721
https://daneshyari.com/article/1730721
https://daneshyari.com

