

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system

Ugur Akbulut ^a, Zafer Utlu ^{b, *}, Olcay Kincay ^c

- ^a Department of Mechanical Engineering, Recep Tayyip Erdoğam University, 52349, Rize, Turkey
- ^b Department of Mechanical Engineering, Istanbul Aydin University, 34455, Florya, Istanbul, Turkey
- ^c Department of Mechanical Engineering, Yildiz Technical University, 34349, Istanbul, Turkey

ARTICLE INFO

Article history:
Received 3 January 2016
Received in revised form
21 March 2016
Accepted 12 April 2016
Available online 6 May 2016

Keywords:
Energy
Exergy
Heat pump
Exergoenvironmental
Exergoeconomic
Wall heating

ABSTRACT

In this study, a vertical ground source heat pump wall heating system belonging to the Yıldız Renewable Energy House on the Davutpaşa Campus of Yıldız Technical University was experimentally and theoretically studied. The examination included energy, exergy, exergoenvironmental and exergoeconomic analyses from 1 January 2013 to 30 March 2013 (i.e., the "Winter Session"). Data were collected and uploaded to a MySQL database. "The moments when the heat pump is activated" was detected and "Monthly Average Values" were analysed. Theoretical analyses were conducted for the Winter Session and correlated with the experimental results. This study includes exergetically, exergoeconomically, and exergoenvironmental evaluate a building and its heating system from the generation stage to the envelope of the building. The findings are based on applying a low exergy, exergoenvironmental and exergoeconomic analysis to investigate the system performance. The energy and exergy efficiencies of the entire system were 67.36% and 27.40%, respectively, and the energy and exergy efficiencies of the wall heating system panels were 86.61% and 82.90%, respectively. The monthly average exergy-based environmental impact value was 0.212 mPts/s. The exergoeconomic factors changed from 74.97% to 75.77%.

1. Introduction

Declining tendency of fossil fuels and greenhouse emissions are the driving forces of renewable energy technologies research. Solar energy and other renewable energy technologies are being evaluated as primary energy sources for the future. While research regarding new and renewable energy resources is vital, improvements to current heat pump systems can provide similar benefits as those derived from pursuing new energy resources. The building sector is one of the leading sectors in energy consumption. For this reason, the utilisation of renewable energy sources in building heating and air conditioning systems is of significant importance. By using heat pump systems integrated with renewable energy-sourced heating and air conditioning systems, the benefits of cyclic renewable sources, such as soil, geothermal, and solar energy, may be exploited for longer periods of time. Using such an approach, increasing the solar fraction and decreasing the

E-mail addresses: zaferutlu@aydin.edu.tr, zafer_utlu@yahoo.com (Z. Utlu).

dependence on fossil fuels in heating systems will be possible. However, the environmental impacts of these technologies must also be minimised. To this end, alternative technologies, such as HPs (heat pumps) technologies, must be developed, and further work must be performed to implement these systems, especially in the residential sector [1,2]. Currently, with reduced energy sources, increased energy prices and increased environmental awareness in society, interests in residential and industrial uses of VGSHP (Vertical Ground Source Heat Pump) technologies in European, American and Asian markets continue to increase.

In the literature, many studies have examined the design, performance, and testing of VGSHPs and have also conducted economic analyses and other tests. Sarbu and Sebarchievici [3] performed a detailed literature review of VGSHP technology, concentrating on ground-coupled heat pump systems. Montagud et al. [4] presented energy performance measurements of a GCHP (GeoCool Heat Pump) system during five years of operation and also examined the evolution of the return water temperature from the ground. Urchueguía et al. compared the energy performances of air-sourced HPs and Ground Source Heat Pumps (GSHPs) in typical Mediterranean climate regions [5]. The technical and economic

^{*} Corresponding author. Istanbul Aydin University, Engineering Faculty, Mechanical Engineering Department, TR 34455, Florya, Istanbul, Turkey.

Nomenclature		j	Process flow point/each flow	
		p	Pipe/Pump	
Α	Area [m ²]	p_1	Pump 1	
B_F	Environmental impact depent on exergy [mPts/s]	p_2	Pump 2	
b _F	Environmental impact per unit of exergy ratio [mPts/	p ₃	Pump 3	
~1	kJ]	sys	System	
c_p	Specific heat [kJ/kg°C]	th	Thermal	
CRF	First investment improvement factor	tr	Reversibility	
CELF	Constant escalation levelling factor	out	Output	
D	Diameter [m]	W	Wall	
E		VV	vvali	
_	Energy [kJ]	Superscripts		
Ė	Energy ratio [kW]	-	•	
Ex	Exergy [kJ]	IC	Investment cost	
Ėx	Exergy ratio [kW]	n	Specified lifetime of systems or components (year)	
$f_{B,k}$	Exergoenvironmental factor	ope	Operation	
f_c	Exergoeconomic factor	OC	Operation cost	
g	Acceleration of gravity [m ² /s]	prod	Production	
h	Convective heat transfer coefficient [W/m².K],	wst	Waste	
	Enthalpy [kJ/kg]	sys	System	
m	Mass [kg]			
m in	Mass flow [kg/s]	Greeks		
		Δ	Differences	
Q	Heat energy [k]	η	Efficiency [%]	
Q	Heat ratio [kW]	ρ	Density [kg/m ³]	
P	Pressure [kPa, Bar]	v	Specific volume [m³/kg]	
R	Thermal resistance [W/m ² .K]	ϕ	Exergy change for per mass at closed system [kW]	
Γ_{i}	Interest rate	ψ	Exergy change for per mass at closed system [kW]	
S	Entropy [kJ/K]	Ψ	Exergy change for per mass at open system [KW]	
S	Entropy for per mass [kJ/kg.K]		Abbreviation	
T,t	Temperature [K, °C]			
U	Conduction heat transfer coefficient [W/m ² K], Internal	ACU	Accumulator	
	energy [kJ]	ANU	Annual working hour	
u	Internal energy, for per mass [kJ/kg]	CV	Control volume	
V	Volume [m ³]	CExC	Cumulative exergy consumption	
W	Work [kJ]	COP	Coefficient of performance	
Ŵ		COMP	Compressor	
	Power [kW]	COND	Condenser	
\dot{Y}_k	Environmental impact based on part [mPts/s]	ELEC	Electricity	
Z	Total cost [€/h]	EVA	Evaporator	
Ż ^{IC}	Investment cost [€/h]	FIC	First investment cost	
\dot{Z}^{OM}		GSHP	Ground source heat pumps	
	Operation cost [€/h]	HP	Heat pump	
		HHV	High heating value	
Subscripts		KE	Kinetic energy	
0 References state		LHV	Low heating value	
aveAverageC AverageCCooling		MC	Maintenance cost	
С	Component	MTEP	Million tons equivalents petroleum	
comp	Compressor	PE	Potential energy	
cond	Condenser	TV	Throttling valve	
dest	Destruction			
e	Electricity	SL	System life	
eva	Evaporator	UGC	Underground circuit	
k	Each system part	UHE	Underground heat exchanger	
L	Land	WHS	Wall heating systems	
in	Input	WHSP	Wall heating system panels	
111	Input			

feasibility of GSHP (ground source heat pump) systems were evaluated for the regions with climates requiring the GSHP cooling properties. Hepbaşlı et al. [6] determined the COP (Coefficient of performance) and performed an exergy analysis of a GSHP system at a vertical depth of 50 m for a 65 m² classroom with passive heating and air conditioning at the Solar Energy Institute. The other study, mathematical model produced to describe the operation of a water to water heat pump system for steady-state condition. The

proposed mathematical models of heat exchangers were described by coupled differential equations, while the models of the compressor and the expansion valve are of lumped parameters. The RungeeKutta and the AdamseMoulton predictor-corrector methods were applied for the numerical solution of differential equations, i.e. the equation systems. The developed mathematical model is validated with 118 tests using R134a as a working fluid. The results show that an average difference between the modelled and

Download English Version:

https://daneshyari.com/en/article/1730857

Download Persian Version:

https://daneshyari.com/article/1730857

<u>Daneshyari.com</u>