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Given the popularity of Lithium-ion batteries in EVs (electric vehicles), predicting the capacity quickly
and accurately throughout a battery's full life-time is still a challenging issue for ensuring the reliability
of EVs. This paper proposes an approach in predicting the varied capacity with discharge cycles based on
metabolic grey theory and consider issues from two perspectives: 1) three metabolic grey models will be
presented, including MGM (metabolic grey model), MREGM (metabolic Residual-error grey model), and
MMREGM (metabolic Markov-residual-error grey model); 2) the universality of these models will be
explored under different conditions (such as various discharge rates and temperatures). Furthermore, the
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Litjl;ium_ion battery research findings in this paper demonstrate the excellent performance of the prediction depending on
Capacity the three models; however, the precision of the MREGM model is inferior compared to the others.

Therefore, we have obtained the conclusion in which the MGM model and the MMREGM model have
excellent performances in predicting the capacity under a variety of load conditions, even using few data
points for modeling. Also, the universality of the metabolic grey prediction theory is verified by pre-

Metabolic grey models

dicting the capacity of batteries under different discharge rates and different temperatures.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion batteries, as a key component of various techno-
logical systems, play an important role in the functional capabilities
of many devices. Thus, battery failure causes serious problems such
as efficiency reduction, system damage, and even disastrous acci-
dents, especially in electric vehicles and aerospace [1]. An effective
technique to monitor batteries can greatly improve system reli-
ability. However, battery performance is restricted to the decline of
battery capacity due to aging and energy loss. Capacity is consid-
ered as a critical parameter of lithium-ion batteries representing
the available energy stored in the fully charged lithium-ion batte-
ries. It is usually used to analyze the SoH (state-of-health) for bat-
teries [2]. Therefore, the prediction of capacity in particular has
concerned many researchers [3,4].

Accurate prediction of the capacity variation of batteries has
been of great research interest both in the past and at present
[5,6]. Many approaches and algorithms have been proposed to
predict the capacity, such as the OCV (open-circuit voltage)
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method [7—9], coulomb counting method, model-based method,
and artificial intelligence method. The OCV estimates the SoC
(state of charge) and the capacity with the internal relationship
between the OCV relaxation curve and the capacity even if the
battery has aged or self-discharged. However, it is not optimal for
system online estimation, because of it needs to take a long rest
time to reach the battery's steady-state for measuring the OCV.
The Coulomb counting method [10] integrates battery discharge
current over time to dynamically recalibrate the capacity for
estimating the SoH. It only requires the discharge current of bat-
teries inputted; hence, it is suitable for deployment in BMS (bat-
tery management systems). However, this method suffers from
accumulated error and noise from current sensors. Researchers
have also been working on a model-based method to estimate the
SoH using a KF (Kalman filter) [11—15]. This method considers a
battery as an ECM (equivalent circuit model) to be described by
different parameters, However, the method more strongly de-
pends on the accuracy of the model parameters, which is hard to
achieve and computationally intensive. To improve the accuracy,
noise adaptive measurement models are developed. Artificial in-
telligence methods (data-driven methods) include fuzzy-logic
[16,17], ANNs (artificial neural networks) [18,19] and SVMs (sup-
port vector machines) [20,21], which do not require a precise
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model of batteries. With good training, they can be applied to
estimate capacity under certain loading conditions. Nevertheless,
it is difficult to train and establish a database to cover all the
different battery working conditions over a lifetime of a battery,
because this process is required to analyze a large amount of test
data and is time-consuming for training and processing.

Due to highly nonlinear, time variation of a battery system, it is
still a challenge to precisely predict the capacity of a battery. When
applying existing methods, there are two problems that need to be
overcome: one is that a large amount of data is often required, and
the other is that a precise battery model needs to be built to give a
good prediction.

In order to predicate the capacity quickly and accurately over
the lifetime of a battery, the grey system theory is introduced in this
paper, which requires less data and does not depend on accurate
parameters of models. The grey system was first developed [22] to
tackle uncertainty systems and soon being widely applied in many
systems [23—26]. It focuses on the study of problems from uncer-
tain systems that involve small samples and poor information. One
of its advantages is that it requires a small amount of data for
prediction; thus, it has a significant advantage over conventional
statistical approaches. Metabolic grey prediction is one of the main
ideas of grey theory, which has recently drawn great attention
owing to its performance. It can adjust parameters to new condi-
tions when the metabolic grey prediction is employed in dynamic
systems, because it aims to make full use of new information. As the
name suggests, the mechanism of metabolic grey lies in that it can
remove the oldest data when the newest data is inputted, and keep
the same numbers from the data points in forecasting sequences for
predicting; consequently, it can track the data fluctuation quickly
and enhance the precision of prediction.

In order to predict the capacity of a battery quickly and accu-
rately, we propose three metabolism grey prediction models,
namely, MGM (metabolic grey model) model, MREGM (metabolic
Residual-error grey model) model and MMREGM (metabolic
Markov-residual-error grey model) model, which combine three
grey models with the metabolism mechanism. We studied the
performances of these grey models, for predicting the capacity, and
verified their universality via applying them under various
discharge rates and temperatures of the batteries.

The remaining parts of this paper are organized as follows: In
section 2, the grey systems theory is introduced and some grey
models is proposed and illustrated. In section 3, the experiment
bench and experiment design for collecting the data from the
lithium-ion batteries are demonstrated. In section 4, the results and
discussions are presented. Finally, in section 5, some conclusions
are provided based on the results.

2. Methodology
2.1. GM model

GM(1,1) is currently one of the most widely used grey prediction
models. It essentially is a linear dynamic first-order single sequence
prediction model for the discrete form of the differential equation
for time series prediction, which can be established by using only
four data points. The scheme of proposed method is shown in Fig. 1.
The GM(1,1) procedure is expressed as follows [27]:

Step 1: The non-negative historical sequence X0 is expressed
as,
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Fig. 1. An implementation flowchart of the GM model.

where xE,]()) denotes the raw data or actual value of observable var-
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Step 2: When this sequence is subjected to the AGO (accumu-

lating generation operation), the following sequence X is ac-
quired. The AGO is expressed as:
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Step 3: The whitening grey dynamic model can be acquired by a
first order differential equation with coefficient b, where b
represents the influence of the external impact on the devel-
opment of an event.

dx)
(k) 1 _
ar T = b 3)
where @ = [a, b]" is a sequence of parameters that can be found as
Eq. (4), the @ is known as the parameters matrix, the a is known as
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