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a b s t r a c t

Using the Bakken shale play as a case study, the previous part of this two-part series demonstrated how
small-scale mobile plants could be used to monetize associated or stranded gas effectively. Here, we
address the issue of uncertainty in future supply, demand and price conditions. To this end, we modified
our multi-period optimization framework to a stochastic programming framework to account for various
scenarios with different parameter realizations in the future. The maximum ENPV (expected net present
value) obtained was $2.01 billion, higher than the NPV obtained in the previous part. In addition, the
value of the stochastic solution was 0.11% of the optimal ENPV, indicating that the flexible nature of
mobile plants affords them a great advantage when dealing with uncertainty.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The first part of this series [1] introduced the concept of small-
scale, mobile modular plants and their potential to shift the current
paradigm away from large capital expenditures and one fixed
location for investments in the oil and gas industry. We considered
two technologies at the small scale, namely GTL (gas-to-liquids)
conversion and LNG (liquefied natural gas) production. A small-
scale, modular plant for either GTL or LNG involves pre-
manufacturing each process unit as compartmentalized, individ-
ual modules which can then be shipped to the site of interest and
assembled together in minimal time to form the entire plant.
Additionally, plants can be quickly disassembled into their indi-
vidual modules and redeployed at other sites, affording them the
benefit of mobility. This mobility allows them to respond quickly to
changes in conditions that might affect their profitability.

Operating plants in a small-scale, mobile fashion offers several
benefits. First, it offers access to stranded sources of gaswhich arise
as a consequence of a lack of accessibility or of insufficient volumes
for larger-scale monetization technologies. Second, it offers lower
financial risk due to the smaller capital outlay, shorter develop-
ment times, and the ability to continuously redeploy operations to

more profitable locations over time. Thirdly, it allows oil resources
to be produced without the environmental impacts of flaring
associated gas.

Prior to this work, there had been no objective and quantitative
framework with which these plants and associated technologies
could be analyzed. Therefore, the first part of this series [1] involved
the development of an optimization framework which determined
the optimal purchase, sales, operation and relocation of these
plants under time-varying conditions of supply, demand and prices
over multiple time periods. The framework was then applied to a
case study of the Bakken shale play, where the short-lived avail-
ability of associated gas at different drilling sites made it appro-
priate to consider the application of mobile plants. The main
conclusion from the case study was that these technologies offered
a very profitable route tomonetizing associated gas. In addition, the
profitability of the optimal strategy was largely enabled by the
flexibility to continuously redeploy the plants to different gas
sources over time [1].

In this second part of this series, we add to the complexity of
the problem at hand by introducing uncertainty into various pa-
rameters that would ultimately affect the profitability of the
entire undertaking. Sahinidis [2] provided a review on optimiza-
tion under uncertainty. Specific to this study, a stochastic pro-
gramming framework was implemented. Readers are referred to
Shapiro [3] for a comprehensive reference on stochastic
programming.* Corresponding author.
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For a sense of continuity, we provide a brief review of articles
which have appeared in Energy in recent years where stochastic
programming frameworks have been implemented to solve
energy-related problems. A two-stage stochastic MILP (mixed-
integer linear programming) approach was implemented by the
following authors. Crist�obal et al. [4] determined the optimal
timing of investments and operation of a CO2 capture system under
uncertainty in CO2 allowance prices. Osmani and Zhang [5] studied
a multi-feedstock lignocellulose-based supply chain under
uncertainties in switchgrass yield, crop residue purchase price,
bioethanol demand and sales price. Tajeddini et al. [6] maximized
the expected profit of a virtual power plant under uncertainties of
solar photovoltaic and wind power output and day-ahead market
prices. Shabani et al. [7] optimized the production planning of a
forest biomass power plant under supply uncertainty.

Azadeh et al. [8] used a multi-stage stochastic linear program-
ming approach to optimize the design and operation of a biofuel
supply chain under uncertainty in biofuel demand and prices and
biomass supply. Seddighi and Ahmadi-Javid [9] used a multi-stage
stochastic MILP approach to plan power generation and trans-
mission expansion with sustainability aspects under uncertainty of
electricity demand, fuel prices, greenhouse gas emissions and
power supply disruptions. Ottesen and Tomasgard [10] used a
multi-stage stochastic MILP approach to operate an energy system
in a building under intermittent supply, load and energy prices
uncertainties.

Currently, there is a relatively small number of papers published
in the general literature which apply optimization under uncer-
tainty to shale gas. Yang et al. [11] optimized water management
operations during shale gas production to maximize profits under
the uncertain availability of water. Bistline [12] explored how
uncertainties in natural gas prices and future climate policies
impacted economic and environmental outcomes in the U.S. power
sector.

We now identify the specific sources of uncertainty in our case
study which might have significant influence on the final profit-
ability of the project. First, typically complicating the decision
process is the considerable uncertainty in the EUR (estimated
ultimate recovery) of gas fromwells being drilled. As mentioned by
the U.S. EIA (Energy Information Administration) [13], this problem
is significantly acute for the case of unconventional resources
where the data collected on production patterns thus far are not
sufficient to estimate reliably production rates far into the future. In
addition, this uncertainty in EUR also impacts the predictions of
drilling patterns of future wells in the play.

A second major source of uncertainty lies in the prices and
demand for the finished products, as they directly impact the
revenue generated from the decision maker's activities. As the
markets for the finished products are very large, the decision
maker is essentially a price taker. Predicting the future prices and
demand for oil and gas-based products is extremely difficult and
as can be seen from past experience, can be very inaccurate. An
example would be the flurry of activity a decade ago to increase
LNG import capacity with the expectation of future shortages of
domestic natural gas production, as reported by White [14].
Hence, the decision maker has to live with the uncertainty with
regards to prices and demand andmake his or her decisions under
such conditions.

A stochastic programming framework can be used to identify
optimal solutions in the presence of parametric uncertainty. In this
framework, several price, supply and demand scenarios are
projected for the future. The decision variables are partitioned into
two sets: the “here-and-now” decisions, which have to be made
before the scenarios are realized, and the “wait-and-see” decisions,
which are made once a particular scenario has been realized.

The objective function for the stochastic program would typically
be to maximize the ENPV (expected net present value) of the
project, which is the sum of the net present value of every scenario
weighted by its associated probability.

This paper provides a novel, timely, and necessary addition to
the first part of the study. Rarely are strategies adequately justified
to be put into practice without the explicit consideration of
uncertainties which might have significant impact on the ultimate
profitability. In addition, the application of optimization under
uncertainty to small-scale mobile plants has not been performed
before, to the best of the authors’ knowledge.

2. Stochastic formulation

A complete description of the problem can be found in Part I [1].
Here, wemodify the formulation in order to account for parametric
uncertainty. We retain the previous indices: time stages
t2f0;…; Tg, gas sources i2f1;…; Ig, plant type j2f1;…; Jg,
markets k2f1;…;Kg and products l2f1;…; Lg. We then introduce
a new index for scenarios s2f1;…; Sg.

The optimization decisions are:

1. Decision to allocate plant of type j to source i at time t of scenario
s, denoted by ytsij2f0;1g.

2. Indicator of the presence of a gas gathering system at source i at
time t of scenario s, denoted by ztsi 2f0;1g.

3. Gas feed rate to plant of type j at source i at time t of scenario s,
denoted by xtsij2ℝþ.

4. Product delivery rate of product l from source i to market k at
time t of scenario s, denoted by wts

ikl2ℝþ.
5. Number of plants of type j purchased at time t of scenario s,

denoted by Buytsj 2Zþ.
6. Number of plants of type j which originally arrived in inventory

at time 0 � t < t of scenario s, sold at time t, denoted by
Selltsjt2Zþ.

7. Inventory of plants of type j at time t of scenario s, arriving in
inventory at time 0 � t � t, denoted by Invtsjt2Zþ.

Essentially, to each constraint in Part I, we replace it with its
stochastic counterpart simply by requiring that each constraint
holds for each individual scenario. For brevity, we directly list the
constraints here and refer the reader to Part I for detailed expla-
nation of each set of constraints.

ztsi � ztþ1;s
i ; ci; s; c0 � t < T : (1)

ytsij � zt�T g ;s
i ; ci; j; s; ct � T g; and (2)

ytsij ¼ 0; ci; j; s; ct <T g: (3)

Invtsjt ¼ Buyt�T j;s
j ; cj; s; ct � T j; ct ¼ t; and

Invtsjt ¼ 0; cj; s; ct <T j; ct ¼ t:
(4)

Invtsjt ¼ Invt�1;s
jt � Selltsjt; cj; t; s ct< t: (5)

X
i

ytsij �
X
t¼0

t

Invtsjt; cj; t; s: (6)
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