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a b s t r a c t

In this paper, a semi-empirical Lithium-iron phosphate-graphite battery aging model is identified over
data mimicking actual cycling conditions that a hybrid electric vehicle battery encounters under real
driving scenarios. The aging model is then used to construct the severity factor map, used to characterize
relative aging of the battery under different operating conditions. This is used as a battery degradation
criterion within a multi-objective optimization problem where battery aging minimization is to be
achieved along with fuel consumption minimization. The method proposed is general and can be applied
to other battery chemistry as well as different vehicular applications. Finally, simulations conducted
using a hybrid electric vehicle simulator show how the two modeling tools developed in this paper, i.e.,
the severity factor map and the aging model, can be effectively used in a multi-objective optimization
problem to predict and control battery degradation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Global concerns over pollution and greenhouse gas emissions,
increasingly stringent vehicle emission regulations and fluctuating
prices of depleting non renewable petroleum resources have
encouraged research in sustainable and clean alternatives for
modern transportation systems [1]. Hybrid electric vehicles (HEVs)
typically have two sources of power, an electric motor and internal
combustion engine, and battery and fuel/fuel tank their respective
energy storage devices.

The extra degree of freedomoffered by the hybrid architecture is
exploited to achieve better fuel economy and lower exhaust
emissions. Most of the research on energy management strategies
design in HEVs has been mainly focused on minimizing fuel con-
sumption under a global constraint of charge sustainability [2]. It is
well understood, though, that battery performance significantly
affects the long term operation of a hybrid vehicle in terms of ex-
pected monetary savings and desired energy efficiency of the
powertrain system. The strategies developed and implemented on
HEVs thus far have not posed any consideration on extending
battery life. Only recently, researchers have started being con-
cerned about battery wear within a vehicle energy management

framework [3], and the issue of modeling battery aging for inclu-
sion in a model-based supervisory control has gained more atten-
tion [4].

The design, integration, and control of the energy storage sys-
tem to match the life of a vehicle becomes a new engineering
challenge. A possible approach to tackle this challenge can be found
in the design of a supervisory control strategy that includes a bat-
tery aging model in the minimization function [5].

Mathematically, this can be described as a multi-objective
optimization problem aimed at minimizing fuel while ensuring
that the battery matches the life of the vehicle. The first formal
attempt of investigating the inclusion of battery aging (in terms of
capacity degradation) in the energymanagement problem for HEVs
was presented in Ref. [4]. However, the limitation of the approach
proposed was in the use of a postulated battery aging model from
the manufacturer's datasheet and not from application-driven ag-
ing data. A second attempt was presented in Ref. [5], where the
authors designed a HEV energy management strategy using the
aging model from Ref. [6]. However, this strategy does not predict
capacity loss under realistic driving scenarios, and does not include
the dependence on one of the main aging factors, i.e. state-of-
charge (SOC). In Ref. [7], an anode Solid Electrolyte Interface (SEI)
layer growth model from Ref. [8] was used to obtain a resistive film
growth rate map that was integrated in the optimal control design
of power management for a PHEV while including battery aging.
Contributions in this area of research are very limited due to the
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lack of formal modeling tools to deal with battery degradation. In
order to properly cast a multi-objective optimization problem that
accounts for battery life and fuel consumption, a control-oriented
battery aging model is needed that is predictive enough for the
application under study. In this paper, the life cycle model from
Ref. [9] is improved to predict degradation for HEV battery. In
particular, themodel is validated, for the first time, against Lithium-
iron phosphate (LiFePO4)-graphite battery used in the field. In
addition, a methodology to design aging degradation maps suited
for multi-objective optimization is proposed. HEV batteries un-
dergo frequent charge/discharge cyclingwhich tend to decrease the
charge capacity and output power that the battery can deliver [10].
The capacity drop, in general, is due to parasitic side reactions,
structural degradations, positive-electrodematerial dissolution, SEI
layer formation and loss of contact between the electrode and the
current collector [11]. These batteries usually undergo two different
types of aging: cycle life aging and calendar aging. In this paper,
only the cycle life aging is considered for which two main families
of modeling approaches have been proposed in literature:

� Electrochemical aging models: These are physics based models
describing the actual phenomena of diffusion [8] and charge
transport of ions of lithium inside a battery [12]. The main ad-
vantages of these models are their accuracy and their ability to
simulate aging under different operating conditions. Their lim-
itations, on the other hand, are in their need for a detailed
knowledge of the agingmechanisms and the high CPU time [13].
The integration of these models inside a Battery Management

System (BMS) for real time control is currently under research
[14].

� Semi-empirical aging models: Typically these are phenomeno-
logical models developed from data obtained in a laboratory
through large scale testing under different aging conditions.
Although these models have lower predictability than their
electrochemical counterpart as they only describe how the ag-
ing mechanisms manifests and do not capture their physics,
they are suitable for estimation-control applications as they
require low computation time to predict degradation and can be
easily integrated within a BMS. In Ref. [6], a semi-empirical
aging model was proposed and calibrated over wide tempera-
ture and current range (Depth of discharge dependence is
neglected in the model); in Ref. [15], a similar model is experi-
mentally validated to predict aging at low SOC of operation at
constant temperature; in Ref. [16], an aging model was devel-
oped to predict capacity degradation both during discharging
and fast charging; a cell degradation study was performed in
Ref. [17] that combines driving and vehicle-to-grid (V2G) usage
for PHEV batteries; and finally, in Ref. [18], a lifetime prediction
model for lithium-ion batteries is validated on profiles defined
by the VDA (German association of the automotive industry).

The focus of this paper is on life cycle semi-empirical battery
aging models.

This paper is organized in the following way. In Section 2, the
identification steps conducted to design the newly calibrated aging
model are presented. In Section 3, the derivation of the severity

Nomenclature

Symbols and descriptions
Qnom Nominal Capacity
Voc Open Circuit Voltage
R Internal Resistance
SOC State of charge
I current
Ic Current rate normalized to battery charge capacity
q internal temperature
SOC Average state of charge
Ic Average current rate
q Average battery internal temperature
Qloss Normalized capacity loss
Qbatt Remaining battery capacity
p Vector of severity factors
Ah Accumulated charge throughput
z Power law exponent
z� Optimum power law exponent
sfunct Severity factor function
s�funct Optimum severity factor function
smap Severity factor map
Ea Activation energy
Rg Universal gas constant
a; b; h Model parameters
ε Total error
Qdata
loss;%;i Capacity loss at the ith Ah throughput

Qmodel
loss;%;i Capacity loss from proposed aging model at the

i� thAh throughput
z Average power law exponent
R2 Goodness of fit coefficient

SSres Residual sum of squares
SStot Total sum of squares
EOL end-of-life
Ic;nom Nominal current rate
SOCnom Nominal state of charge
qnom Nominal battery temperature
G Total charge throughput of the battery operated under

nominal load cycle
g Total charge throughput of the battery operated under

a given load cycle
SEI Solid electrolyte interface
vsmap

vIc
Sensitivity of severity factor map with respect to
current rate

vsmap

vq Sensitivity of severity factor map with respect to
battery internal temperature

vsmap

vSOC Sensitivity of severity factor map with respect to
battery state of charge

CVT Continuous variable transmission
Treq Torque request
Tem Electric machine torque
Tice Engine torque
Tbr Brake torque
TCVT CVT torque
uem Electric machine speed
uice Engine speed
vveh Vehicle speed
_mf Instantaneous fuel consumption rate
Pbatt power
u Control variable
ca Transformation coefficient
qamb Ambient temperature
Aheff Effective charge throughput
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