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a b s t r a c t

A classical SPRT likelihood test for sequential independently distributed data is often used in pipeline
mass balance leak detection to distinguish between true leaks and false alarms in the minimum time
consistent with a user defined error tolerance. However such time series data would not be expected to
be independent, especially as it is often moving averaged to remove noise and unwanted transients. In
this paper a modified SPRT test is derived using a simple Gaussian Markov process to model a correlated
time series. Application of the modified test to correlated time series data is shown to reduce false alarms
below that of a classical SPRT.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There are a number of approaches to process fault detection such
as standard statistical quality control (SQC) plots (Zhang, 1993),
state estimators such as Kalman filters (KF) and likelihood tests. Of
these the SPRT and Kalman filter approaches appear to be most
promising (Alag, Agogino, & Morjaria, 2001; Zhang, 1993). Both
the Kalman filter and SPRT can be shown to be optimal from a
Bayesian standpoint, in that they both attempt to minimize objec-
tive functions that are aimed at reducing the probability of a false
alarm while maximizing probability of detecting a genuine fault.
The advantage of sequential methods such as the SPRT over batch
processing is that all the samples are not required simultaneously
to make a decision. The objective is to make such a decision in
the minimum time consistent with the decision limits set for false
alarm and missed detection rates.

The SPRT and KF approaches have some differences too. The KF
is tuned beforehand and relies on prior estimates of the distur-
bance covariance matrices. It thus tends to be sensitive to these
estimates and diverge if they are in error. Unlike KF, SPRT has the
advantage of being robust, intuitive and easily tuned real time. It
can also be shown to reach acceptance or rejection thresholds for
fault detection with the minimum number of consecutive inde-
pendent samples. However unlike KF it relies on the assumption
these samples are iid (independently and identically distributed),
an assumption which is often unjustified in practice.
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In the case of mass balance pipeline leak detection the finite
time constants of the system tend to produce a low pass filter that
effectively correlates time series data (Montgomery, 2000). The
effect of transients, linepacking and instrument noise are espe-
cially pronounced in the case of multiphase flow, making fault
(leak) detection ineffective when standard statistical process con-
trol methods are employed. Thus such data is often processed using
an SPRT which is further correlated by moving average filtering
adopted in order to mitigate the effects of such transients (Turner,
1991).

In this document a modified SPRT test is developed that extends
the classical SPRT to the case of (Gaussian Markov) random pro-
cesses which are first order auto regressive (AR-1). The modified
SPRT procedure reduces the number of erroneous alarms that
would be created using a test that assumes an uncorrelated time
series.

2. Review of SPRT

The SPRT distinguishes between two alternative one-sided
hypotheses:

H0 : � ≤ �0, H1 : � ≥ �1, �0 < �1 (1)

The standard SPRT can be shown to minimize the number of
samples required to distinguish between these two hypotheses,
given pre assigned tolerance levels for making type I or type II
errors. A type I error rejects H when its true, while a type II error
accepts H when in fact it is false. The level of these probability
thresholds depends on consequences of respective risks. For exam-
ple, if the financial or human costs of a leak are extreme, then it
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Fig. 1. Example of SPRT hypothesis test. To right of error limits H0 is more likely,
and on the left H1 is. The limits on � values set type I and type II errors.

may be better to tolerate the extra cost of coping with more false
alarms. Fig. 1 illustrates the situation.

The plot is an example of how a classical SPRT test works. The
x-axis represents some hypothetical values of Z derived from dif-
ferent hypotheses. �1 and �0 represent the thresholds on declaring
an alarm condition. Moving left in the direction of the left arrow
produces an increasing probability of the detection accepting H1.
�1 is the declaration limit on this association. The higher �1 the less
likely a false alarm will be generated and the longer the resulting
waiting time. The ratio of H1 to H0 gives the odds on this. Similarly
as the �1 threshold is breached on the upside the Z statistic falls
below the minimum value corresponding to �0 on the downside.
This represents rejection of the H0 hypothesis. Moving in the direc-
tion of the right arrow leads to acceptance of H0. The range between
�1 and �0 is the region where the test is operating but has not yet
concluded. This corresponds to the error limits shown.

For a sequence of random variables Xn = (x1, x2, x3, . . . xn) the
sequential application of the following likelihood ratio test min-
imizes the number of samples to make a decision subject to pre
assigned type I and type II probabilities (Wald, 1947).

Zn = ln
f (Xn|�1, Xn−1)
f (Xn|�0, Xn−1)

n ≥ 1 (2)

The hypothesis is accepted if Z < b and rejected if Z > a. If neither
is true the testing is continued. From Fig. 1 it is clear that a cascading
test such as this repeatedly applied will narrow the distributions at
each sample point, thus reducing the width of the ambiguous region
between the error limits. For iid samples the criteria for preferring
H1 to H0 can be written in incremental form as

Zn =
n∑
i

{
ln

[
f (Xi+1|�1, Xi)
f (Xi+1|�0, Xi)

]
− ln

[
f (Xi|�1, Xi−1)
f (Xi|�0, Xi−1)

]}
(3)

More simply this can be written as

Zn =
∑

i

ln

[
f (Xi+1|�1)f (Xi|�0)
f (Xi+1|�0)f (Xi|�1)

]
(4)

For iid distributions the distribution functions can be expressed
as a product

f (Xi|�1) = f (xi|�1)f (xi−1|�1) . . . f (x1|�1) (5)

Then Eq. (4) becomes

Zn =
∑

i

ln

[
f (xi|�1, xi−1)
f (xi|�0, xi−1)

]
(6)

The dependence on the past value is to indicate that as long as
the time series has the Markov property the same formula clearly
holds. Eq. (6) corresponds to a CUSUM plot which terminates if Zn

exceeds a threshold. The thresholds are related to the H1 hypothesis
type I (missed alarm) error probability p and type II (false alarm)
error probabilities q by the Wald approximations (Wald, 1947).

b ≈ ln
(

q

1 − p

)
a ≈ ln

(
1 − q

p

) (7)

where b is the threshold for a missed alarm and a for a false alarm.

3. The leak detection problem

Assuming iid Gaussian random variables the probability den-
sity function of moving averaged leak data will be Gaussian. If the
leakage at time, t, is x(t) and the moving average is m(t), then

f (x) = A

�0(t)2
e

− [x(t)−m(t)]2

2�0(t)2 (8)

where A is a constant and �0(t)2 is local value of the leakage vari-
ance. Using Eq. (4) this results in the following expression for the
CUSUM.

Disturbance of variance from �0 to �1:

Zn =
n∑

i=1

1
2

(
1

�2
0

− 1

�2
1

(xi − �0)2

)
− ln

[
�1

�0

]
(9)

Disturbance of mean from �0 to �1:

Zn =
n∑

i=1

(�1 − �0)

�2
0

[
xi − �0 −

(
1
2

)
(�1 − �0)

]
(10)

Unfortunately the test is less effective in this case. Leakage data
samples, x(t), are not iid between consecutive time intervals, since
moving averaging correlates the data. To account for this case in
the simplest manner, two further quantities are introduced. The
one single lag autocorrelation of moving averaged data Ryy(i + 1,i)
and the joint probability density function of consecutive samples,
f[y(i),y(i + 1)].

For a process with spectral density Sxx(ω), moving averaged over
the window – T to T the autocorrelation can be calculated using

Ryy(�) = 1
2�

∫ ∞

−∞
Sxx(ω)

[
sin2(Tω)

T2ω2

]
ejω�dω (11)

which is simply the convolution of the data with a moving aver-
age low pass filter. For data which is initially iid this reduces to
(Papoulis, 1991)

Ryy(�) = 1
2T

2T∫
−2T

(
1 − |˛|

2T

)
Rxx(� − ˛)d˛ (12)

The correlation between consecutive samples at times t1 and t2
is simply R = Ryy(t2 − t1)/�2, or R = Ryy(i + 1,i)/�2 for sampled data.
The variance is simply Ryy(0).

For Gaussian random variables (rv’s) the joint pdf for subsequent
data samples y1 = y(i) and y2 = y(i + 1) is

f (y1, y2) = 1

2��1�2

√
1 − R2

exp

[
− 1

2(1 − R2)

(
y2

1

�2
1

− 2
Ry1y2

�1�2
+ y2

2

�2
2

)]
(13)
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