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ABSTRACT

Energy resources are distributed in space. Models of spatial variability thus greatly contribute to the
optimal exploitation of such resources. This paper concentrates on modeling the spatial distribution of
energy content based on geostatistical interpolation and simulation methods. We focus on lignite, a fossil
fuel which plays a key role in the energy budget in several parts of the world. Nonetheless, geostatistical
tools are also relevant for the analysis of renewable and other fossil-based energy resources. Quantitative
understanding of the spatial variability of lignite energy reserves helps to optimize mine exploitation and
to reduce fluctuations in the quality of the fuel supplied to power plants. We also introduce the spatial
profitability index as an analytical tool for the design and medium-term exploitation of multiseam mines.
Based on this index we propose an empirical equation which allows fast and practical estimation of
changes in energy reserves due to variations in expected costs or revenues. We illustrate the proposed
modeling framework using lignite data from the Mavropigi mine in Northern Greece.

Uncertainty estimation

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In spite of environmental concerns related to fossil fuels, coal
remains an important energy resource which contributes to the
energy independence of countries poor in other energy resources.
Currently, approximately 30% of the electricity generation in the
European Union is coal-based, while the coal industry contributed
=~240,000 jobs in 2012 [1].

Both fossil-based and renewable energy resources are distrib-
uted in space (renewable resources in addition have temporal
dependence). A quantitative understanding of the spatial variations
is necessary to optimize exploitation plans, correctly assess in-
vestment risks, and timely compensate for local fluctuations in the
quality of the energy product. This paper shows that geostatistical
tools [2,3] can be used to efficiently analyze the spatial variability,
estimate uncertainties, and address economic questions,
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environmental concerns, as well as issues related to mine exploi-
tation. Geostatistical methods are sufficiently general to handle
spatial variability and exploitation strategies for diverse energy
sources.

Coal exploitation presents several environmental challenges
due to release of CO,, toxic hydrogen sulfide (H,S), deposition of
large quantities of waste, and production of fly ash, bottom ash and
sludge [4]. However, the environmental problems can be at least
partially mitigated [5]: filters can capture and neutralize fly ash and
harmful gases, while planning strategies allow for waste disposal in
exploited parts of the mine. Lignite is considered to be low-quality
coal based on its low calorific value and content of volatiles. The
world-wide lignite production in 2012 was 0.9 billion tonnes
whereas 3% of the global power generation was lignite-based.

1.1. Background on lignite mining

Many lignite mines exploit multiseam geological structures in
which lignite seams alternate with other formations [6]. There are,
however, no universal criteria for geologically classifying a seam as
lignite [1]. Herein, a seam is considered as lignite if its lower calorific
value (LCV) exceeds 900 kcal/kg and the sum of CO, and ash content
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is less than 50%. Intercalated seams refer to non-profitable soil or
rock that is extracted with the lignite: overburden lies above the
first lignite seam, while interburden refers to material that lies be-
tween ore seams in multiseam deposits.

The terminal depth in open pit lignite mines is measured by the
pit bottom elevation [6]. Long-term planning refers to exploitation for
periods that usually exceed five years, e.g. to the planning of large
mine sectors. Medium-term planning refers to periods that are
typically less than five years.

1.2. Economic indices

Engineers use several indices that help to optimize lignite pro-
duction under specified economic and environmental constraints.
Profitability is commonly measured by means of the discounted
cash flow method (DCF) which is based on the equation
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In the above, NPV is the net present value of the mine, Cp is the
investment cost, T is the expected life of the mine in years, i is the
time period (measured in years), I1; is the annual production, P; is
the price per unit tonne, C; is the production cost per unit tonne,
and r incorporates discount effects and risk factors [[6], p. 51], [7].
DCF provides a global estimate of economic profit but does not
resolve local variations across the mine or the interchange of ore
and intercalated seams in the vertical direction.

The profitability index (revenue to investment ratio), is defined
by

PV
PIR = % (2)

PV is the present value of the mine. PIR > 1 denotes a potentially
profitable investment, whereas PIR < 1 implies that the required
costs exceed the expected payoff. PIR also lacks the ability to ac-
count for local variations and individual seams.

The stripping ratio (R) is the volume of intercalated material that
must be disposed per tonne of ore recovered [[6], p. 389]. The
marginal stripping ratio is the critical threshold above which
exploitation becomes unprofitable. The stripping ratio is evaluated
for different mine sectors and helps to define the pit limits via
comparison with the marginal stripping ratio. Hence, the stripping
ratio incorporates spatial variability but does not account for the
profitability of individual seams.

1.3. Spatial analysis

Spatial analysis can resolve variations of various properties at
different scales and identify potentially useful correlations between
variables. Therefore, it finds applications in energy resources
exploitation [8—10], earth sciences [11,12], meteorology [13,14] and
agriculture [15] among other fields. There are different mathe-
matical frameworks for conducting spatial analysis including ma-
chine learning methods, radial basis functions, and geostatistics.
The geostatistical viewpoint [2] offers a good balance between
flexibility and ease of use. In contrast with the simpler distance-
based methods (e.g., Shepard's inverse distance weighting), geo-
statistical methods provide quantitative uncertainty measures. In
addition, they account for spatial correlations, different probability
distributions, geological discontinuities, and the extent of the de-
posit [16].

This work focuses on the geostatistical analysis of lignite energy
resources. We use spatial interpolation to estimate the energy

content locally and conditional simulations to quantify the uncer-
tainty of the estimates. The Spatial Profitability Index (SPI) is intro-
duced as a novel tool for evaluating the profitability of individual
seams in open pit multiseam mines. It allows investigating the
impact of economic factors (e.g., market price fluctuations, costs of
environmental regulations) on the estimated reserves and to better
assess the costs and revenues of different exploitation scenarios.
The SPI also helps to effectively design the final open pit bottom
elevations. With regard to medium-term planning, SPI analysis
helps to investigate the economic impact of options such as
canceling the exploitation of certain benches or extraction using
non-continuous mining methods which involve asynchronous
extraction and transportation of the ore. We also derive a semi-
empirical, explicit, SPI equation that compactly captures the rela-
tion between changes of the estimated reserves and economic
scenarios.

2. Methods
2.1. Overview of geostatistical analysis

In the following we assume that the energy area density is
modeled as a spatial random fields & (s), where s is the position
vector [11,2].

2.1.1. Variogram models

Geostatistical analysis is based on the variogram function
v(s,s + r), where r is the lag (distance) vector. The variogram de-
scribes the spatial correlations of the spatial random field & (s). It
is defined by means of the following equation, in which E[-] de-
notes the expectation over the ensemble of the random field states
[17].

¥ = JE[(#(5) ~ #(s 4+ 1)), 3)

In (3) it is assumed that & (s) is either statistically stationary or
that it has stationary increments, so that y(r) depends only on r and
not on s. If #(s) is stationary, y(r) is connected to the covariance
((r) as follows

y(r) = €(0) — C(r). (4)

It follows from (4) that v(0) = 0. In practice, the empirical var-
iogram, which is estimated from the data, may show a discontinuity
Co at the origin. Cp is known as the nugget variance and represents
unresolvable fluctuations or measurement errors [9].

The Spartan Spatial Random Field (SSRF) covariance model is
used in the geostatistical analysis below. In three spatial di-
mensions the Spartan model is given by Ref. [18,19]
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In Equation (5), no is the scale factor that determines the
magnitude of the fluctuations, 7, is the rigidity coefficient, and ¢ is
the characteristic length that determines the range of spatial cor-
relations. The remaining coefficients are given by 13 = \2$n1\1/2.
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