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a b s t r a c t

Short-term optimization models, usually applied to traditional problems like UC (unit commitment) and
economic dispatch problem, are essential tools for the planning and operation of power systems.
However, the large number of variables and restrictions, necessary for a good and more accurate rep-
resentation of any electricity system, require high computational resources, frequently resulting in high
computation times. This study proposes a simplified approach of a model for the electricity planning of
power plants allocation based on the available resources. The model resources to quadratic penalty
functions and avoid on/off binary variables. The approach is then supported on a non-linear optimization
model able to solve this electricity planning problem in shorter computation times, with solutions close
to the ones obtained with more complex models. The model is fully described and tested under different
scenarios of an electricity system comprising thermal, wind, and hydropower plants. The results were
compared to the ones obtained with a more complex model, analysing the main differences obtained for
cost, CO2 emissions and of wind power impacts on this electricity system. The most remarkable
advantage of the simplified model comes from the significant reduction on computational time needed
for state-of-the-art optimization solvers to provide an optimal solution, comparatively to mixed integer
models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing of electricity production from renewable energy
utilities is frequently seen as a fundamental measure to mitigate
greenhouse gas emissions. Over the last years, this growth was
reached in large extension by the wind power sector. Public
awareness about emissions, climate change and environmental
issues, oil and gas reserves depletion along with the improvements
in wind turbine technologies were some of the main reasons for
this increase [1]. However, problems in the operation of the elec-
tricity system and even environmental and climatic impacts of
renewable utilities were also reported [2]. The unpredictability and
variability of RES (renewable energy sources), became a challenge
to grid operators as large RES share can give rise to periods of
surplus of production, increase the need for thermal power plants
operate at low load factor and increase also the their start-up and
shutdown requirements [3e5]. These technical issues related to the
impacts of high wind penetration on thermal power plants

performance were debated for example in Troy et al. [6] or De
Jonghe et al. [7]. Despite these concerns, works such as Guti�errez-
Martín et al. [8] concluded that RES potential for CO2 reductions is
relevant even at high wind penetration levels.

Electricity power generation systems are now characterized by a
high level of complexity, usually combining a high set of thermal
power plants with RES power plants, giving rise to a large number
of technical constraints. Short-term optimization models, usually
applied to traditional problems like UC (unit commitment) and
economic dispatch problem, are then essential tools for the plan-
ning and operation of power systems. According to Hobbs [9];
traditional UC and economic dispatch problems usually require
short-term periods of time. Time periods ranging from one to ten
minutes or eight hours to one week for economic dispatch and UC
problem respectively are example of time periods addressed in
short term optimizationmodels. The basic goal of the UC problem is
to properly schedule the on/off states of all power plants in the
system. Further on, the optimal UC should meet the predicted load
demand, plus the spinning reserve requirement at every time in-
terval minimizing the total cost of production [10]; [11].

Short-term optimizationmodels can also have an important role
on supporting strategic energy decision making, allowing to test
the expected outcomes of different electricity scenarios. However,

* Corresponding author.
E-mail addresses: sergiop@dps.uminho.pt (S. Pereira), paulaf@dps.uminho.pt

(P. Ferreira), aivaz@dps.uminho.pt (A.I.F. Vaz).

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier .com/locate/energy

http://dx.doi.org/10.1016/j.energy.2015.10.040
0360-5442/© 2015 Elsevier Ltd. All rights reserved.

Energy 93 (2015) 2126e2135

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:sergiop@dps.uminho.pt
mailto:paulaf@dps.uminho.pt
mailto:aivaz@dps.uminho.pt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2015.10.040&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
http://dx.doi.org/10.1016/j.energy.2015.10.040
http://dx.doi.org/10.1016/j.energy.2015.10.040
http://dx.doi.org/10.1016/j.energy.2015.10.040


due to the complexity associated to these problems, their trans-
lation in a computational language can be a hard task. The large
number of variables and restrictions, necessary for a good and ac-
curate representation of any electricity system turns the code
complex and highly computational resource consuming.

A diversity of technics have been applied over the time to solve
this UC problem. Technics such as, Bender's decomposition [12],
differential evolution [13], evolutionary algorithms [14], genetic
algorithms [15], Lagrangian Relaxation [16], MILP optimization [17],
particle swarm optimization [18], simulated annealing [19] and
stochastic optimization [20] are examples of mathematical ap-
proaches used to solve the UC problem.

Seems clear that the increasing integration of RES of variable
output brings evenmore challenges to optimizationmodels used to
support decision making on electricity systems operation. The
result is an ever increasing complexity of these models requiring
high computational resources, frequently resulting in high
computation time. The UC problem is then difficult to solve effi-
ciently, especially for large-scale instances [25]. However, in high
RES system the problem is proved to be essential not only for the
short term decision making but also to efficient generation
expansion planning [21]. According to Palmintier [22] typical
planning and policy models do not consider the technical operating
conditions of the system. This author proposed then a new
formulation of a model that captures the operational flexibility
within capacity planning optimization. This new formulation con-
sists in grouping similar generators into clusters resulting in the
reduction of the problem size but still capturing operating reserves
and other flexibility drivers. Also Viana and Pedroso [17] presented
a simplified method to solve a typical quadratic optimization for
the UC problem, proposing a piecewise linear approximation of the
quadratic function. The authors showed that their simplification
was capable of tackling large problems and reaching optimal so-
lutions in less computational time. A tighter and more compact
MILP formulation of start-up and shut-down ramping in unit
commitment problems was proposed in Morales-Espa~na et al. [23]

and in Morales-Espa~na et al. [24] in order to reduce the computa-
tional burden of other MILP formulations and by this reaching a
dramatic reduction on the computation time. Other recent exam-
ples in the literature include Yang et al. [25] or �Alvarez L�opez et al.
[26] presenting different approaches to solve the UC problems and
achieve optimal solutions in less execution time.

This papers aims not only to contribute to the debate on the
formulation of optimization model to provide solid results for de-
cision makers in reduced time, but also to show how these models
can effectively be used on the analysis of RES integration on the
operation of electricity systems and by this assess long term
planning scenarios. The, objective of this work is then twofold.
Firstly, a simplified model for the UC problem is presented with the
final goal of reducing the complexity traditionally present in these
models and computational tools, resulting in less computation time
to get an optimal solution. A simplified(NLP nonlinear problem)
resorting to penalty functions to replace the unit on/off binary
variables is therefore proposed in this paper. Secondly, a compari-
son between the presented model and a more complex one,
detailed in Pereira et al. [27] is presented. For the comparison, a
case study representing an electricity system close to the Portu-
guese and mainly comprised of thermal, wind, hydropower plants
and SRP (Special Regime Producers, representing cogeneration and
non-wind renewable non subject to dispatch) was selected. The
comparison was made in terms of the obtained costs, CO2 emis-
sions, thermal power plants commitment, total simulation time
and the analysis of wind power impacts on this electricity system.
Simulations were conducted assuming three different scenarios,
each one representing different levels of installed wind power. The
seasonality of both hydro and wind power recourses was consid-
ered, as the models were compared under four typical weeks, each
one representing a season of the year, with hourly time step
(0e167 h).

This paper is organized as follows. First, Section 2will present an
overview of the proposed model, detailing the assumed simplifi-
cations comparatively to previous Pereira et al. [27] model. In

Nomenclature

Sets
T set of the time period (hours)
C set of all coal power plants
J set of all thermal power groups
G set of all gas power plants

Parameters
CVOMhd

variable O&M cost of hydropower plants (V/MWh)
CVOMp variable O&M cost of pumping power plants (V/MWh)
CVOMj variable O&M cost of thermal power group j (V/MWh)
Fj fuel cost of thermal power group j (V/MWh)
CO2j

CO2 emissions factor of thermal power group j (ton/
MWh)

ColdSj cost of cold startup of thermal power group j (V)
Nj time necessary for a cold startup of thermal power

group j in hours
CVOMhr

variable O&M cost of runeoferiver power plants
(V/MWh)

CVOMw variable O&M cost of wind power plants (V/MWh)
Cpp pumping cost (V/MWh)
EC CO2 emissions allowance costs (V/ton)

CSdj shutdown cost of thermal power group j (V)
HotSj cost of hot startup of thermal power group j (V)

Variables
Ct,j total cost of thermal power group j in hour t (V) (V)
Sdt,j shutdown cost of thermal power group j in hour t (V)
phrt power output of runeoferiver power plants in hour t

(MWh)
pwindt Power output of wind power plants in hour t (MWh)
vt,j binary variable that is 1 if thermal power group j is on

in hour t or 0 if it is off
Lg(t) load factor of gas power groups in hour t (ptt,g/Pg)
ag,bg,cg coefficients of gas quadratic curves
Sut,j startup cost of thermal power group j in hour t (V)
phdt power output of hydropower plants with reservoir in

hour t (MWh)
ppumpt power output of pumping power plants in hour t

(MWh)
ptt,j power output of thermal power group j in hour t

(MWh)
Lc(t) load factor of coal power groups in hour t (ptt,c/Pc)
ac,bc,cc coefficients of coal quadratic curves
Pj maximum capacity of thermal power group j
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