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a b s t r a c t

This two-part paper proposes an approach based on state-of-the-art numerical optimization methods for
simultaneously determining the most profitable design and part-load operation of Combined Heat and
Power Organic Rankine Cycles. Compared to the usual design practice, the important advantages of the
proposed approach are (i) to consider the part-load performance of the ORC at the design stage, (ii) to
optimize not only the cycle variables, but also the main turbine design variables (number of stages, stage
loads, rotational speed). In this first part (Part A), the design model and the optimization algorithm are
presented and tested on a real-world test case. PGS-COM, a recently proposed hybrid derivative-free
algorithm, allows to efficiently tackle the challenging non-smooth black-box problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The utilization of renewable and low-grade heat sources for
power generation has received significant attention in the past
decade in view of increasing concerns over climate change and high
energy prices. To this aim, closed power cycles, mainly ORC
(Organic Rankine Cycles) and supercritical CO2 cycles, have been
studied, developed, and implemented at industrial scales. While
supercritical CO2 cycles are still object of research and development
as well as tests [1], ORCs are nowadays widely adopted for small
(100 kW) to medium scale (1e10 MW) power generation (see, e.g.,
the list of ORC installations by Turboden [2] and Triogen [3], two
manufacturers of ORCs). Their main advantages over conventional
steam cycles include higher cycle and turbine efficiencies at small
scales (<1 MW) and/or low heat source temperatures (<200 �C),
cheaper turbine (fewer stages and lower mechanical stress
compared to a steam turbine), no blade erosion due to the adoption
of dry-expansion fluids, no need of water demineralization, blow-
down, and deaeration. Compared to internal combustion engines
and microturbines, ORCs can use a wide variety of heat sources,
including solid fuels, such as wood and straw, concentrated solar

energy, geothermal heat, as well as waste heat made available by
industrial processes. Hence the high popularity of ORCs.

On the other hand, the design criteria for ORCs are still object of
study because of (i) the large number of available working fluids,
(ii) the influence of the thermodynamic properties of the working
fluid on the optimal cycle configuration, operating variables, and
plant cost, (iii) the wide range of possible applications (e.g.,
biomass-fired combined heat and power plants, concentrated solar
plants, binary geothermal plants, waste heat recovery, etc) with
peculiar specifications, (iv) the ongoing research and development
on turbines and heat exchangers. For these reasons, more than four
hundred papers have been published so far on the topic of ORC
optimization, and most of them in the last four years [4]. However,
only a few of them use rigorous mathematical models of the plant
and apply numerical optimization algorithms. In the next subsec-
tion we briefly summarize the main works which use numerical
optimization algorithms to determine the best ORC design.

1.1. Previous works on the optimization of ORC design

Dai et al. [5] develop a thermodynamic model of a waste heat
recovery ORC which, for fixed cycle variables, determines the per-
formance of the cycle. The exergy efficiency of the cycle is maxi-
mized with a “black-box” approach (see for further details [6]): the
cycle model is executed by the optimization algorithm as a “black-
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box” function. The optimization algorithm varies the design vari-
ables looking for theminimum of a selected objective function, and,
for each sampled solution, an ad hoc routine solves the model to
evaluate the cycle performance. In Dai et al. [5] the cycle model is
solved with an ad hoc iterative routine written by the authors in
Fortran, while the optimization problem is tackled with an unde-
fined Genetic Algorithm. The decision variables are only two, the
turbine inlet temperature and pressure. The optimization of the
cycle variables is repeated for ten different working fluids. Papa-
dopoulos et al. [7] present an approach for the optimal selection of
working fluids for ORCs based on amulti-objective Computer Aided
Molecular Design technique. The designed molecules are Pareto
optimal with respect to a set relevant physical properties such as
density, heat of vaporization and liquid heat capacity. The actual
performance of the optimized fluids is evaluated with a simplified
thermo-economic model of the ORC. Rashidi et al. [8] build the
thermodynamic model of regenerative ORCs in EES (Engineering
Equation Solver, a commercial software package used for solution
of systems of non-linear equations, [9]) and use themodel results to
train a neural network. Then, an artificial bees colony algorithm
optimizes the regeneration pressures referring to the trained neural
network to evaluate the performance indexes of the cycle. Wang
et al. [10] propose a Matlab model of a low temperature waste heat
recovery ORC which includes thermodynamic, heat transfer and
economic relations. A set of thirteen working fluids is defined, and
for each of them the main four design variables (pressures of
evaporation and condensation pressures, and velocities of working
fluid and cooling water in the heat exchangers) are optimized with
a black-box approach: the cycle simulation code is executed as a
black-box function by a Simulated Annealing algorithm (details are
not specified). Wang et al. [11] adopt a similar black-box approach
to optimize an ORC for low grade waste heat recovery. Their ther-
modynamic model, coded in Matlab, includes a detailed heat
transfer calculation of the heat exchangers aimed at determining
the required heat transfer area. Assuming that the overall capital
cost of ORC system is dominated by the cost of the heat exchanger
area, the authors consider the ratio net power output/heat transfer
area as objective function, and adopt a Genetic Algorithm (since not
specified, it is supposed to be algorithm of Conn et al. [12] which is
available in the Matlab Global Optimization toolbox [13]) to opti-
mize the turbine inlet pressure and temperature, and the temper-
ature differences of the heat recovery generator (at pinch and
approach points). Later, in Ref. [14], the model is improved by
adding an economic model, and including the condenser temper-
ature difference into the set of optimization variables. The trade-off
between maximum exergy efficiency and minimum capital cost is
evaluated by setting a multi-objective optimization problem and
tackling it with the NSGA-II algorithm [15] which is implemented in
theMatlab Global Optimization toolbox [13]. Xi et al. [16] maximize
the exergy efficiency of regenerative ORCs for low temperature
waste heat recovery. It is worth noting that regenerators are
mixers: before entering the heat recovery generator, the liquid
stream is mixed with the vapor extracted from the turbine.
Following a black-box strategy, the cycle simulation is solved by a
code implemented by the authors, while the decision variables
(namely, turbine inlet temperature and pressure, and the fraction of
flow rate to the regenerators) are optimized with a genetic algo-
rithm combining different improved evolution operators. Pierobon
et al. [17] propose a multi-objective optimization approach for the
design of heat recovery ORCs for offshore platforms (where cycle
weight and size matter). The multi-objective genetic algorithm
NSGA-II of [15] controls a Matlab routine (the black-box) which
solves the cycle, design the heat exchangers, and works out the
overall efficiency, net present value and volume. The decision var-
iables of the GA are: working fluid type, condenser outlet

temperature, turbine inlet pressure, superheating temperature
difference, pinch point temperature differences of condenser,
regenerator, economizer and evaporator, and fluid velocities in
each heat exchanger. The black-box routine contains not only the
cycle solver but also an inner optimization procedure which de-
termines the heat exchanger geometry for fixed fluid velocities
with the Nelder-Mead method [18]. A similar black-box approach
with just a simplified cycle model is used by Andreasen et al. [19] to
optimize the mixture composition and cycle variables of ORCs for
low grade heat recovery.

Lecompte et al. [20] are the first ones to propose a strategy for
optimizing the thermo-economic design of ORCs which takes into
account of the part-load performance of the cycle over the expected
year of operation. Their study is focused on a ORC recovering waste
heat from an internal combustion engine with time-dependent
load. They want to determine the best cycle design for the ex-
pected yearly scheduling of the engine and ambient temperature
(affecting condenser performance). Hence, they define a sampling
grid of nominal design conditions (ambient temperature and
thermal power provided by the engine), and for each point they
determine (1) the design variables which minimize the specific
(nominal) investment cost with the Nelder-Mead method [18], (2)
the part-load map of the optimized cycle expressing the net power
output as a function of the ambient temperature and engine load
(the part-load operation is solved with a cycle simulation code built
in Matlab and linked to the Golden Section Search algorithm to
optimize the mass flow rate of cooling air), (3) the behavior of the
optimized cycle over the year and the actual annual specific cost.
Once the actual annual specific cost of each grid point is computed,
a polynomial model is regressed and used to determine the optimal
design condition (ambient temperature and thermal power pro-
vided by the engine) and associated design variables. Pierobon et al.
[21] improve the design optimization model and algorithm of [17]
for heat recovery ORCs, and combine it with a dynamic model in
order to select the most flexible solutions. First the Pareto-optimal
solutions with respect to efficiency and volume are found with the
steady-state model, then their dynamic performance is evaluated
with Modelica [22]. Maraver et al. [23] tackle the thermodynamic
optimization of ORCs for waste heat recovery systems, CHP (com-
bined heat and power) plants, and binary geothermal power plants.
After identifying the most common fluids used in commercial ORC
units, they build a basic thermodynamic model of the cycle and
optimize the exergy efficiency of the cycles by varying the inlet
turbine pressure and superheat temperature with the direct-search
algorithm DIRECT (DIviding RECTangles, [24]).

Walraven et al. [25] develop amodel to simultaneously optimize
the cycle variables and the design variables of the heat exchangers.
The cycle is modeled with the energy and mass balance equations
of the pieces of equipment (pump, turbine, heat exchangers,
mixers, splitters), while the heat transfer coefficients and pressure
drops of each heat exchanger are computed with the BelleDela-
ware method. An equation oriented approach (in which optimiza-
tion and model solution are simultaneous because the model
equations are included in the optimization problem as constraints,
see Ref. [26]) is used to optimize the turbine inlet temperature, the
evaporation temperature, the fluid mass flow rate, the condenser
temperature, the regenerator minimum temperature difference,
and the geometrical variables of the heat exchangers. The objective
function is the exergy efficiency of the plant which can be achieved
for a given total heat exchanger area. The gradient-based WORHP
algorithm of Buskens & Wassel [27] is applied, and gradients are
calculated with automatic differentiation. In Ref. [28] the authors
add the models of the axial turbine and air-cooled condenser.

Larsen et al. [29] tackle the optimization of heat recovery power
cycles (including ORCs) for large ship engines adopting a black-box
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