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a b s t r a c t

The state-of-energy is an important evaluation index for energy optimization and management of power
battery systems in electric vehicles. Unlike the state-of-charge which represents the residual energy of
the battery in traditional applications, state-of-energy is integral result of battery power, which is the
product of current and terminal voltage. On the other hand, like state-of-charge, the state-of-energy has
an effect on terminal voltage. Therefore, it is hard to solve the nonlinear problems between state-of-
energy and terminal voltage, which will complicate the estimation of a battery's state-of-energy. To
address this issue, a method based on wavelet-neural-network-based battery model and particle filter
estimator is presented for the state-of-energy estimation. The wavelet-neural-network based battery
model is used to simulate the entire dynamic electrical characteristics of batteries. The temperature and
discharge rate are also taken into account to improve model accuracy. Besides, in order to suppress the
measurement noises of current and voltage, a particle filter estimator is applied to estimate cell state-of-
energy. Experimental results on LiFePO4 batteries indicate that the wavelet-neural-network based bat-
tery model simulates battery dynamics robustly with high accuracy and the estimation value based on
the particle filter estimator converges to the real state-of-energy within an error of ±4%.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to consideration of energy crisis and environment protec-
tion, the low-emission and energy saving EV (electric vehicles)
have become the developing tendency of the energy trans-
formation. In recent years, various electrochemical energy storage
systems have been introduced for EV applications, like NiMH
(Nickel/Metal Hydride), Li-ion (Lithium-ion) batteries as well as
other types such as ultra-capacitors and fuel cells etc. Li-ion bat-
teries have become widely used power source in EVs for its high
power density, high energy density and long lifetime. For instance,
Zou et al. [1] proposed a combined SOC (state-of-charge) and SOH
(state-of-health) estimation method over the lifespan of a Li-ion
battery. Hu et al. [2] presented an integrated method for the ca-
pacity estimation and remaining useful life prediction of Li-ion
battery. Kang et al. [3] proposed a method to compare the
comprehensive properties of different battery systems in terms of a
parameter, energy efficiency. Hu et al. [4] discussed an ameliorated

sample entropy-based capacity estimator for prognostics and
health management of Li-ion batteries in electrified vehicles.
Fathabadi et al. [5] presented a novel Li-ion battery pack design
including hybrid active-passive thermal management system. In
order to maintain optimum battery performance, a BMS (battery
management system) is critical for battery system. Therefore, the
BMS must know accurate and reliable battery system parameters.
The SOC is a critical parameter for power battery systems. It plays a
role in representing the residual energy of the battery in traditional
applications. Thus, it is used to predict residual driving mileage of
EVs. However, with the sophisticated and complex functional de-
mand trend of BMS, the disadvantages of using the estimated SOC
to represent the battery residual energy become more prominent
[6]. The SOE (State of energy), which provides the essential basis of
energy deployment, load balancing and security of electricity for
the complex energy systems, is an important evaluation index for
energy optimization and management of power battery systems
[6].

Traditionally, SOC is used not only to protect battery from been
over charged or over discharged, but also to represent the residual
energy of battery. Nevertheless, there are several disadvantages of
using the estimated SOC to represent the battery residual energy, as* Corresponding author. Tel.: þ86 055163606104..
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reviewed by Liu et al. [6]. Firstly, the SOC is defined as the ratio of
the residual capacity to the total original capacity of a Li-ion battery,
which means that SOC cannot indicate the energy state on which
the battery application conditions is dependent. Some works have
considered the residual available capacity instead of the SOC to
determine the residual energy of battery. For instance, to the
determination of the available energy stored in the battery, Waag
et al. [7] employed the estimation of battery electromotive force to
estimate SOC and capacity of the battery. Hausmann et al. [8]
expanded the Peukert equation for battery capacity modeling
through inclusion of a temperature dependency. Shen et al. [9]
defined the state of available capacity, instead of SOC to denote
the battery residual available capacity for lead-acid batteries. Liu
et al. [10] proposed an extended Peukert equation to estimate the
available capacity of batteries including the temperature effect.
Secondly, the battery energy can be regarded as the product of the
capacity and the OCV (open circuit voltage) of the battery. Although
there is a positive correlation between battery SOE and SOC, they
have no explicit quantitative. The SOC decreases linearly with the
discharge current, but the battery energy is the product of the ca-
pacity and the OCV of the battery. Battery energy change has direct
link with its real-time voltage, as a result, it is hard to be accurately
calculated. Thirdly, the discharge current and the temperature
which usually change dramatically due to the dynamic load in
actual battery system will have significant effects on battery per-
formance. Wang et al. [11] measured the electronic conductivity of
LiFePO4 and LiFePO4/C at various temperatures to understand the
difference of low-temperature electrochemical performance be-
tween the carbon-coated and uncoated LiFePO4 cathodes. Yi et al.
[12] reported a modeling methodology on the temperature
dependence of discharge behavior of a Li-ion battery in low envi-
ronment temperature. At the same SOC, the SOE may change on
account of the fact that the discharge efficiency is dependent on the
discharge current and temperature [6]. Thus, it is necessary to take
the effect of discharge current and temperature into account for
getting a more accurate SOE estimation.

In recent years, many researches have been devoted to devel-
oping improved methods for SOC estimation. Ng et al. [13] pro-
posed a smart estimation method based on coulomb counting. The
electrical model based methods established battery models to
capture the relationship between the SOC and the OCV of the
battery, then the adaptive filters, such as Kalman filter [14] and
particle filter, for instance, dual-particle-filter presented in Liu et al.
[15], unscented particle filter proposed in Zhong et al. [16] and He
et al. [17]. Charkhgard et al. [18] presented a method for SOC esti-
mation of Li-Ion batteries using neural networks and the EKF
(extended Kalman filter). Some works developed the fuzzy logic
method [19] and support vector machines [20] for SOC estimation.
Most of thesemethods have beenwidely used andmade acceptable
achievements in different applications. Adopting same methods as
SOC estimations, an assortment of techniques have previously been
reported to measure or estimate the SOE of the cells. Among them,
Stockar et al. [21], Mamadou et al. [22] and Kermani et al. [23]
presented the definition of SOE and the algorithms to follow-up
the SOE based on direct power integral method which used po-
wer integral to estimate the SOE. However, this method had a
significant estimation error because of the measurement noises of
current and terminal voltage of the battery. Liu et al. [6] has pro-
posed an improved direct SOE estimation method at dynamic
current and temperature conditions based on BPNN (back-propa-
gation neural network). In the input layer, the battery terminal
voltage, the current and the temperature are taken as the input
parameters, and the output layer is the estimated SOE. However,
this method is an open-loop estimation so that its estimation ac-
curacy becomes poor due to the incorrect measurements. Wang

et al. [24] has proposed a joint estimator for SOC and SOE to
overcome the disadvantages of power integral method. However,
the SOE estimation accuracy depends on the SOC estimation ac-
curacy in this developedmethod. Zhang et al. [25] proposed a novel
model-based joint estimation approach to improve the estimation
accuracy and reliability for battery SOE and power capability, and
the battery model takes SOE as a state variable. However, it has not
taken the influence of temperature and discharge rate on total
available energy into account, while the total available energy is a
critical parameter directly limit the pack performance through
“capacity fade”. Unlike SOC, SOE is integral result of battery power,
which is the product of current and terminal voltage. On the other
hand, like SOC, SOE has an effect on terminal voltage. Therefore, it is
hard to solve the nonlinear problems between SOE and terminal
voltage, which will complicate the estimation of a battery's SOE.
Therefore, there is need to establish a battery state space model
that takes SOE as a state variable. Once this model is established,
the adaptive filter algorithms used in SOC estimation will be
available for SOE estimation for getting more accurate SOE
estimation.

In this paper, a WNN (wavelet neural network) -based battery
state-space model and PF (particle filter) estimator is carried out to
improve the batterymodeling and SOE estimation. It is organized as
follows. A clear scheme of battery test bench, the definition of SOE
and some battery test data analysis for Li-ion batteries are given in
Section 2. The test results are used to analyze some influencing
factors of the SOE estimation, such as OCV, discharge current and
temperature. In Section 3, a state-space model of the SOE that takes
into account the effect of the discharge current and temperature is
established. Then, parameters of theWNN-based battery model are
identified by the experimental data of LiFePO4 batteries. In Section
4, the PF method based on the proposed model is applied to esti-
mate the SOE. In Section 5, simulations and comparison tests based
on the proposed model and real battery data will be presented to
verify the superiority of the proposed algorithm.

2. Experimental

As an application case, LiFePO4 batteries are chosen to verify the
proposed approach. Section 2.1 gives a brief introduction for the
test bench. In order to analyze the characteristics of SOE, the defi-
nition of SOE is first given in Section 2.2.1. Then, the test data
analysis is given in Section 2.2.2.

2.1. Test bench

Experimental studies are conducted on LiFePO4 batteries with a
rated capacity of 9 Ah (produced by Hefei Guoxuan High-Tech Po-
wer Energy CO., Ltd. of China). The parameters of the battery are
given in Table 1. In order to acquire experimental data such as
current, voltage and temperature, a battery test bench has been
established. The configuration of the test bench is drawn in Fig. 1,
which consists of a battery test systemNEWWARE BTS4000, a BMS,
a CAN communication unit, a programmable temperature chamber,
a computer to program and store experimental data and some test
cells. The NEWWARE BTS4000 is responsible for loading the

Table 1
Battery parameters of LiFePO4.

Parameter Value

Rated capacity 9 A h
Low cutoff voltage 2.0 V
Upper limit voltage 3.65 V
Operating temperature �20� ~ 60 �C
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