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a b s t r a c t

The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of
forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional
temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide
insights into the underlying physical significance of the effect on entropy generation. By incorporating
the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law character-
istics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio,
effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case
of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy
generation is identified at a Darcy number of 10�4, providing an ideal operating condition from the
second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engi-
neering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors,
filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Forced convective heat transfer in porous media prevails in
versatile engineering applications such as electronics cooling,
porous insulation, catalytic reactors and flow of liquid in biological
and physiological processes. Due to the presence of frictional
heating arising from increasing contact of fluid and solid phases
and the wall as well as internal heating associated with the me-
chanical power needed to extrude the fluid through a porous me-
dium, the effect of viscous dissipation is essentially significant as
compared to that of clear-fluid flow [1e5]. Viscous dissipation
which manifests itself as a source term in the fluid flow induces
appreciable rise in fluid temperature due to the conversion of ki-
netic motion of fluid to thermal energy. Most of the related studies
involving viscous dissipation effect in porous-medium flow
employed the one-equation model which assumes both the solid
and fluid phases to be in locally thermal equilibrium [6e10].
However, the distinctive thermophysical properties of solid phase
and fluid phase in a porous medium instigate considerable thermal
resistance at the interface between the two phases and induce

significant temperature difference between the two phases, inva-
lidating the assumption of local thermal equilibrium [11]. By
considering viscous dissipation effect of force convection in porous
medium subjected to uniform wall heat fluxes, the one-equation-
model deviates significantly from the two-equation model and
the Nusselt number is strongly affected by viscous dissipation
[5,12]. On the other hand, studies of asymmetrical thermal
boundaries on forced convection heat transfer in porous channel
are relatively scarce. By employing the local thermal equilibrium
model, Mondal [13] investigated asymmetrical heating and cooling
of a porous medium in a parallel plate channel subjected to con-
stant wall temperatures with internal heat generation. Therefore,
the issue of coupled effects of thermal asymmetries and local
thermal non-equilibrium on forced convection in porous media
poses an interesting subject to be addressed and investigated.

Apart from the analysis based on the basic conservation laws,
the second-law analysis dealing with entropy generation attributed
to thermodynamic irreversibilities is crucial for optimum operating
conditions in designing a system with less entropy and exergy
destruction. In accordance to the GouyeStodola theorem, the loss
of the available work of the system is directly proportional to the
entropy generation [14]. This type of engineering approachwhich is
known as EGM (Entropy Generation Minimization) is a robust
design tool in applied thermal engineering applications [15e19].* Corresponding author. Tel.: þ60 3 5514 6251; fax: þ60 3 5514 6207.
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Recently, a number of studies dealing with entropy analysis for
internal forced convection have been reported [19e27]. However,
there exist only limited studies on entropy generation of thermal
non-equilibrium porous medium flow. The entropy generation of
rarefied gaseous slip flow in micro-porous channel was studied
under thermal non-equilibrium condition without considering
viscous dissipation in the energy equation [28]. In another nu-
merical modelling, the thermal non-equilibrium model was
employed to investigate the entropy generation of natural con-
vection in a saturated porous cavity [29]. On the other hand, the
two-energy-equation model with viscous dissipation effect was
used and the volume-averaged entropy generation function was
developed and analysed numerically [30]. Ting et al. [31] pointed
out that the entropy generation is intimately related to the effec-
tiveness of the interstitial heat transfer between the solid and fluid
phases of nanofluid flow in porous media, substantiating the sig-
nificance of thermal non-equilibrium condition in the second-law
analysis.

This study aims to analyse the forced convection of viscous
dissipative flow in porous media subjected to thermal asymmetries
from the first-law and the second-law thermodynamic aspects.
Particularly, the second-law analysis associated with the effects of
thermal asymmetry on forced convection in a thermal non-
equilibrium porous media is still unavailable in the existing liter-
ature. By incorporating thermal asymmetric boundaries and uti-
lizing thermal non-equilibrium model for forced convection in a
porous medium, we obtain the two-dimensional closed-form so-
lutions of temperature profiles of solid and fluid phases and derive

the two-dimensional entropy generation analytically by consid-
ering the interstitial heat transfer between the solid and fluid
phases. With the variations of various pertinent parameters such as
Darcy number, Brinkman number and Biot number, the thermal
non-equilibrium entropy generation is scrutinized under various
cases of asymmetrical heat fluxes. We perform a comprehensive
study to delineate the essential attributes of the underlying phys-
ical significance of the thermal asymmetries in the entropy gen-
eration of viscous dissipative flow in porous media.

2. Mathematical formulation

2.1. First-law formulation

Theworking fluid flows through a porousmedium embedded in
channel between two parallel plates subjected to asymmetrical
thermal boundary conditions as illustrated in Fig.1. For steady-state
fully developed laminar flow in a porous medium between infi-
nitely wide parallel plates, the Brinkman momentum equation is
given by

�m

K
vx þ meff

d2vx
dy2

� dP
dx

¼ 0; (1)

where m and meff are the fluid viscosity and the effective viscosity of
porous medium, respectively, K is the permeability, vx is the fluid
velocity and P is the pressure. The Forchheimer term is neglected in
Eq. (1). This term is only dominant for high Reynolds number flow

Nomenclature

A temperature gradient along the channel (K)
a specific surface area (m�1)
Be local Bejan number
Bi Biot number
Br Brinkman number
Br

0
clear-fluid Brinkman number

B1 bottom wall inlet temperature (K)
B2 top wall inlet temperature (K)
cp fluid specific heat capacity (J kg�1 K�1)
Da Darcy number
FFI dimensionless fluid friction irreversibility
H half-height of the channel (m)
h local interstitial heat transfer coefficient (W m�2 K�1)
heff system effective convective heat transfer coefficient

(W m�2 K�1)

h specific enthalpy (J kg�1)
HTI dimensionless heat transfer irreversibility
K porous medium permeability (m2)
kf fluid thermal conductivity (W m�1 K�1)
kfe effective fluid thermal conductivity (W m�1 K�1)
kr effective thermal conductivity ratio
kse effective porous medium solid thermal conductivity

(W m�1 K�1)
L length of channel (m)
M ratio of effective viscosity to fluid viscosity as defined

in Eq. (2)
Nu Nusselt number
P fluid pressure (Pa)
q heat flux (W m�2)
qr ratio of top wall heat flux to bottom wall heat flux
Re reynolds number

S porous medium shape factor as defined in Eq. (6)
s specific entropy (J kg�1 K�1)
_S
000

gen entropy generation rate per unit volume (W K�1 m�3)
Sgen dimensionless entropy generation rate per unit volume
SgenY channel-height averaged dimensionless entropy

generation rate per unit volume
SgenYX domain averaged dimensionless entropy generation

rate per unit volume
T temperature (K)
〈T〉 bulk mean temperature (K)
V dimensionless fluid velocity
〈V〉 channel-height averaged dimensionless velocity

(m s�1)
v fluid velocity (m s�1)
x longitudinal coordinates (m)
X dimensionless longitudinal coordinates
y transverse coordinate (m)
Y dimensionless transverse coordinate

Greek symbols
ε porosity of porous medium
m fluid viscosity (N s m�2)
meff effective viscosity (N s m�2)
r fluid density (kg m�3)
q dimensionless temperature profile
〈q〉 dimensionless bulk mean temperature

Subscripts
f of fluid phase
s of solid phase
w1 of bottom wall
w2 of top wall
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