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a b s t r a c t

Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating
integration of wind turbine on power systems. Operation and planning of power systems are affected by
this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the
optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO
(probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo)
techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the
accuracy to attain reasonable results when diminishing the computational effort. Also, this paper in-
troduces a methodology for optimally dispatching the reactive power in the transmission system, while
minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy
programing). The core of the problem lay on generation of 2m þ 1 point estimates for solving PRPO,
where n is the number of input stochastic variables. The proposed methodology is investigated using the
IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow
controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demon-
strated in the case study.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Progressively ascending fuel prices accompanied by environ-
mental concerns have induced countries to expand their power
system infrastructure to incorporate further renewable energy,
notably wind generation [1,2]. Annual statistics show that wind
capacity increased by 16% from 2013 to 2014 with 51 GW of new
capacity added [3,4]. The unmanageable nature of this category of
energy necessitates probabilistic analysis of the power system
operation.

MC (Mont-Carlo) technique has been well proven as a trust-
worthy means to deal with stochastic variables and to attain dis-
tribution of the resultant variables with high precision [5e7]. In the
view of aforementioned characteristics, MC methods are perceived
as the most precise, reliable and robust SAM (stochastic analysis
method), which is commonly used as a referencemethod to inspect
the correctness of other probabilistic methods [8e10]. However,

the enormous computational effort which is required for this
method persuades researchers to use alternative approaches which
are capable of quickly acquiring the probabilistic output attributes
of the system.

Abundant studies have confirmed that PEMs (point estimate
methods) are capable of producing convincing stochastic results
while effectively reducing the computational efforts [11e13].
However, the primary version of this method requires the input
random variables’ PDF (probability density function) to evaluate
the 2m þ 1 central moments. The aforementioned constraint
within the PEM algorithm grew more apparent when stochastic
input variables follow no common PDF [13]. This is most
assuredly the case when the wind generation sources are inte-
grated into the power grid. Although the stochastic behavior of
wind speed is commonly modeled by a Weibull or Rayleigh PDF,
the nonlinear relationship between the wind speed and the wind
power makes it difficult to match the wind power to any
generally known PDF. In order to cope with this issue, a discrete
point estimate method is utilized. The core of the discrete point
estimate method is that it employs sufficient sample measure-
ment to approximate the (2m�1)th central moment of the input
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variables, where m refers to the number of concentration points
in PEM approach.

In the other hand, HVDC (high voltage direct current) trans-
mission lines along with FACTS (flexible AC transmission sys-
tems) offer an excellent opportunity to support and improve
the power supply of sustainable, efficient and reliable future
grids [14,15]. FACTS are well known for the fast-response devices
that can control the active and reactive power as well as the
bus voltage. One of the more comprehensive FACTS devices is
UPFC (Unified Power Flow Controller) that helps power systems
to share the excessive loads from the lines and leads to the
loss decline and high stable operations. To the best of authors’
knowledge, only few papers [16e20] have considered PRPO
(probabilistic reactive power optimization) in the presence of
HVDC and UPFC along with the uncertainties injected by the
wind generation source.

Therefore, this paper intended to propose a comprehensive
model which consists of HVDC, UPFC and DFIG (double fed induc-
tion generator) as one of the most widely used generators in the
wind turbine. This model takes the stochasticity under consider-
ation in order to fill this gap. The main idea of this work is to attain

the optimal control variables that are appropriate for stochastic
situation, meanwhile minimizing the active power loss. Contrary to
deterministic RPO (reactive power optimization), the probabilistic
nature of input variables results in outputs from the optimization
process become probabilistic. In addition, this paper presents a
method that takes the uncertainty in optimization process into
accounts, while conducting the proposed method in hybrid power
system to consider a comprehensive model for investigation the
proposed methodology.

The remainder of this paper is arranged as follows: descrip-
tion of system model consisting of DFIG wind turbine, HVDC
and UPFC models are introduced in Section 2. Details of discrete
PEM are discussed in Section 3. A probabilistic reactive power
optimization algorithm is proposed that aims to minimize active
power loss in Section 3. The problem is formulated as linear
fuzzy programing [21] considering the stochastic effects of the
wind generation and loads. In Section 4 the performance of
the proposed method is investigated with modified IEEE-14 bus
test system and the correctness of the method is evaluated
through comparing obtained results with those provided by MC
technique.

Nomenclature

Vdc dc terminal voltage
Idc dc terminal current
Rc commutation resistance
a transformer tap connected to DC terminals
Pdc active power at DC terminals
Qdc reactive power flowing from the AC to DC
j the voltage angle of AC bus connected to DC
jdc the angle of AC current injected into the DC
Vcr series voltage magnitude of UPFC
Vvr parallel voltage magnitude of UPFC
qcr angle of series voltage source
qvr angle of parallel voltage source
Pmk transferred active power between bus m and K
Qmk transferred reactive power between bus m, k
~j probabilistic jacobian matrix
tij transformer tab between buses i and j
Vg voltage magnitude of generator bus (PV buses)
Qz compensators reactive power
Pst DFIG's stator active power
Qst DFIG's stator reactive power
Iro DFIG's rotor current
xsout the relative error of the standard deviation of the

output random variable
x
m

out the mean error indices of a set of out put
x
s

out the standard deviation error indices of a set of out put
z ¼ f ðXÞ the PRPO objective function
X set of n random variable
XM Mth sample point of x
KT matrix which links objective functions to variables
S sensitivity matrix
b dependent parameters matrix
bmax, bmin upper and lower boundary of dependent variables
xmax maximum limit of linearized control parameters
xmin minimum limit of linearized control parameters
�e fuzzy less than or equal to
D fuzzy decision
G, C fuzzysubsets for objective functions and constraints

mDðXÞ membership function of D
mGðXÞ; mCðXÞ membership function of G, C
l the degree of satisfaction for fuzzy objective function

and fuzzy constraints
mfi ðXÞ fuzzy membership function of fiðXÞ
[i threshold of constraint
PðrÞL active power loss in iteration r
Pro DFIG's rotor active power
Ptot DFIG's total active power
Qro DFIG's rotor reactive power
Vst DFIG's stator voltage
Ist DFIG's stator current
Qtot DFIG's total reactive power
mrj rth sample central moment ofjth random variable
mxj average value of the M observation of jth variable
sxj the standard deviation of xj
rj;k kth concentration points correspond to jth input

random
xj;k kth standard location for jth input variable
wj;k kth weighting factor for jth input variable
x
m
out the relative error of the mean of the output random

variable

Abbreviation
Rec rectifier
Inv inverter
MC Monte Carlo
PDF probability density function
PEM point estimate method
MW Mega Watt
MVAr Mega VAr
p.u, Per Unit
PRPO probabilistic reactive power optimization
RPO reactive power optimization
LFP linear fuzzy programming
HVDC high voltage direct current
FACTS flexible ac transmission systems
UPFC unified power flow controller
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