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a b s t r a c t

We propose a statistical algorithm for sizing the energy storage system required for delivering baseload
electricity to a selected confidence level for a wind farm. The proposed algorithm can be utilized by
utilities to assess wind integration and to investigate better capacity credits for wind farms connected to
the grid, by wind farm operators to potentially increase their return on investment by designing a
baseload wind farm to a selected confidence level, and by financial institutions to calculate the confi-
dence level for baseload wind farm projects. Methods introduced are based on parametric and
nonparametric statistical models using wind resource assessment data and available wind turbine in-
formation that reflect different stages of a wind farm projectdfrom site selection to operational status.
To study the performance of each method, we apply these to a North America operational wind farm data
set. We use averaged 10-min and hourly data to calculate and compare the firm capacity of the wind
turbine for each proposed method. The results show that for different stages of the wind farm devel-
opment, and depending on the available information, the proposed algorithm can properly estimate the
energy storage capacity required to deliver constant power to a user selected confidence level.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Electricity generation from non-hydro renewable energy sour-
ces like wind and solar is a key solution in addressing global energy
concerns, and achieving the world's goal of limiting the earth's
temperature increase to 2 �C in 2050 [1]. Utilities that have a sig-
nificant portion of their generation from fossil fuel sources have
realized that a move away from these sources will be required for a
more sustainable future due to CO2 and other harmful emissions
[2]. Several studies have investigated high penetration of inter-
mittent wind power into the electric grids, and have addressed the
main challenge of accommodating high penetration of the inter-
mittent sources, i.e., the variability imposed on the power system
[3e6]. Most robust grid systems today, no matter what the supply
mix is, can likely accommodate approximately 25e30% intermit-
tent sources such as wind power without any major changes to the

grid [7,8]. Higher penetrations of wind and solar renewables on an
energy basis may require the use of ESS (energy storage system) to
integrate these intermittent renewables. The future electric grid
can be made 100% renewable with utilizing intermittent renew-
ables likewind and solar if their intermittent nature is addressed by
the addition of an appropriate amount of ESS [8e10]. As postulated
in this paper, these intermittent renewables can be “converted” to
baseload generation by using appropriately sized ESS to smooth out
their intermittency, allowing penetrations of more renewables.

Wind electricity generation is becoming more economically
competitive, achieving the lowest marginal cost [11,12]. The
declining costs of ESS can further support utilization of large scale
ESS in power systems. The integration of ESS and wind energy to
produce firm capacity of the generator for higher penetration of
wind into the grid through repurposing electric vehicles batteries is
discussed in Refs. [13,14]. The authors present a cost formula, and
show how the size and cost of storage system affects the total cost
of wind power production as a baseload generator unit.

Many publications have presented different methods to size the
capacity of ESS in various electric grid applications [15e18]. We
introduce a general algorithm for sizing the ESS integrated with
wind power with the objective of firming the capacity of wind
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farms. The presented algorithm contributes towards our goal of
converting intermittent wind to a baseload power generation
source. This is a novel step towards the goal of using wind power
plants in the future electric grids where higher penetration rates of
intermittent wind energy are anticipated.

We calculate the size of ESS energy capacity in kWh required
to generate constant power in kW, using enhanced parametric
and nonparametric statistical methods based on available infor-
mation of the wind power plant. Three methods are presented to
perform the ESS sizing calculations each representing a scenario
associated with (i) wind farm project conception, or, (ii) wind
farm operation. In each method, we use statistical models to
calculate the required ESS energy capacity. A data set of wind
speed and power values for a wind farm in North America is used
representing 10-min and hourly averaged data for a duration of
six months in 2006 and 2007 to implement the methods and
compare the influence of data resolution on the size of ESS. We
also average the data to create different resolutions (e.g., hourly)
to assess the influence of data resolution on the size of ESS. A
comparison of the calculated size of storage from each proposed
method is then presented.

In this analysis, we attempt to achieve a flat output from the
proposed system. However, we note that baseload power genera-
tion does not necessarily mean a 100% flat output. Furthermore,
roundtrip efficiencies of different ESS technologies may apply to
reflect a more realistic capacity of the storage system. However, in
this analysis and for the purpose of developing the methodology of
the proposed statistical algorithm, and comparison of the proposed
methods, a flat output power and an efficiency of 100% are assumed
for the analysis.

Section 2 describes the proposed ESS sizing algorithm. In Sec-
tion 3, the first method is introduced for the scenario where the
theoretical power curve is derived from available wind speed data.
Within this method, three different approaches are presented
which require prior knowledge of wind turbine parameters. Section
4 presents the ESS sizing case when the turbine is selected and the
manufacturer power curve is known. Section 5 considers the case
when thewind farm is operational and the operational wind power
data are available. In Section 6, we apply these methods to wind
resource and operation data of an actual wind farm. Concluding
remarks as well as some suggested future work in this research
direction are provided in Section 7.

2. Energy storage sizing algorithm

In this section, we present the general algorithm for calculating
the size of ESS requirements when the goal is to produce the
baseload power of awind generator in a given location.We propose
three different methods, denoted byM1,M2, andM3, and expand on
them using parametric and nonparametric statistical techniques.
Each method represents a stage of development of a wind farm,
from conception to operational.

The first method, M1, is performed before the operation of the
wind farm and uses only the wind resource assessment data of the
location of study as well as some possible general information
about the characteristics of a generic wind turbine such as cut-in
(vc), cut-out (vs) and rated (vr) speeds. A turbine starts generating
power when the wind speed reaches vc, and achieves its rated
power, pr, at the wind speed vr. When the wind speed reaches vs,
the turbine is shut down to prevent damage [19]. In this method,
M1A represents the case where no information about the wind
turbine is available. M1B assumes that in addition to the time-
domain wind data, vc and vs of a generic wind turbine are
known. In M1C, the rated speed of the generic turbine is also
known.

The second method, M2, is similar to M1 except that we addi-
tionally have knowledge of the selected wind turbine power curve
for the wind farm, which can be written as pi¼ f(vi) where f($) is
known [20].

Method M3 is performed when we have access to the actual
operational data of the wind farm including the time series of the
measured wind speeds and the corresponding generated power.
Therefore, thesemethods cover all possible scenarios for estimating
the capacity of ESS to generate baseload wind power to a selected
confidence level.

In the proposed algorithm, the storage sizing procedure is per-
formed using the following steps:

i. Wind turbine firm capacity calculation: The firm capacity of
the wind turbine, p*, is determined as the reference value
with respect to which, the size of ESS is calculated. This is the
average output power that the generator is producing
intermittently.

ii. Power imbalances calculation: The net difference between the
firm capacity of the turbine p*, and the wind power, Pw, is
calculated.

iii. Energy imbalances calculation: For each time interval, the
individual energy imbalances are calculated by integrating
the net power rating over the span of time i.

iv. ESS sizing calculation: The size of each energy charges and
discharges is obtained by summing over consecutive occur-
rences of individual energy imbalances.

v. Confidence levels: The histogram of ESS charges and dis-
charges is created to fit a suitable pdf (probability distribu-
tion function), and apply different statistical methods to
obtain the size of ESS with different confidence levels. This
represents a critical step in performing an economic assess-
ment to determine the size of ESS.

3. M1 based on wind resource assessment data

To obtain the firm capacity of the turbine, we first estimate the
pdf of wind speeds by constructing the histogram of thewind speed
data and estimating the parameters of the pdf of wind speeds. The
Weibull distribution is often used to fit the wind speed data [21,22]
as a unimodal, two parameter family of distribution functions with
the following pdf

fV ðvÞ ¼
�
k
c

��v
c

�k�1
e�ðv=cÞk ; v>0; (1)

where c> 0 is the scale parameter with the same unit as wind
speed, and k> 0 is the dimensionless shape parameter of the dis-
tribution [23]. We use the notation V ~Weibull(c,k) to denote that V
has the Weibull distribution with parameters c and k. The Weibull
distribution with c¼ 2 reduces to the Rayleigh distribution which
has also been widely used for fitting the wind speed data [24,25].
The mean and the variance of a Weibull random variable are ob-
tained in terms of gamma functions as follow

mV ¼ cH kð1Þ and s2V ¼ c2
n
H kð2Þ � H 2

kð1Þ
o

(2)

where H kðiÞ ¼
R∞
0 xi=ke�xdx; i ¼ 1;2.

There are several methods to estimate c and k in (1), including
the ML (maximum likelihood) method, the MM (method of mo-
ments), and the LS (least square) method [26,27]. In this paper, we
use the ML method to estimate c and k which has several desirable
theoretical properties such as asymptotic optimality and efficiency
for large sample sizes [28]. The ML estimates of c and k are uniquely
determined as follow [29]:
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