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a b s t r a c t

The optimisation, sizing and techno-economic assessment of stand-alone renewable energy systems
affects not only the likelihood of deployment but also their reliability to supply electricity and potable
water where needed. Very little work has been done earlier into the effects of integrating water desa-
lination alongside meeting load demand. Moreover, the impact of intelligent techniques, in this context,
against more established software tools has not been applied. In this paper, PSO (Particle Swarm Opti-
misation) is compared to HOMER for the simultaneous optimisation of size and PMS (Power Manage-
ment Strategy) in stand-alone hybrid energy systems. These systems incorporate significant relative
water load met by reverse osmosis. Multi-objective functions in PSO minimise Total NPC (Net Present
Cost) (includes capital, maintenance and replacement costs over a 25 year system lifetime) and lifetime
CO2 emissions whilst meeting these two loads. Results are analysed and compared for the conditions of
dynamic (15 min resolved) versus static water demand in addition to meeting varying electric loads. The
PSO algorithm is implemented using MATLAB/Simulink and compared to a similar overall configuration
developed in HOMER to meet the same loads (electric, water).

Results show using PSO achieves systems having lower NPC compared to HOMER, with the margin of
improvement more pronounced in greater scale systems as water storage capacity and electrical load
increase. Additionally, having a time-varying water profile negatively effects system performance by
increasing NPC and CO2 emissions compared to a static water profile.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With connection to the electrical grid very costly for remote
locations, renewable energy is increasingly being integrated into
stand-alone energy systems to reduce reliance on diesel power
generation. Renewables (such as solar and wind) remain attractive
as perpetual and secure long-term energy sources. As such, they are
an excellent candidate for stand-alone power generation at
reduced or negligible operational emissions [1]. However, renew-
able sources are highly stochastic and experience seasonal fluctu-
ations [2]. Thus energy storage devices such as batteries and
hydrogen are often used in stand-alone (hybrid) energy systems
[3e6]. Energy storage is essential where there exists a mismatch
between external electrical loads and the availability of renewables,

and facilitates overall system operation by smoothing out load
fluctuations [6] and improving operational characteristics [7].

Effective sizing of hybridised energy systems is necessary to
achieve objectives such as meeting external load demand or
reducing lifetime CO2 footprint, whilst operating at the lowest
energy cost ($/kWhr) [8,9]. The sizing of such systems commonly
relies on “simplistically” matching peak demand with the
maximum rated capacity of system components [10,11]. However,
this approach has the likely outcome that systems are oversized
which yields more costly solutions to meet a given electric load
profile. More elaborate techniques attempt to optimise sizing
through numerical methods, which can be iterative or probabilistic
as well as based on genetic algorithms, fuzzy logic or neural net-
works [3,8,12e18]. Within this scope, PSO (Particle Swarm Opti-
misation) is an intelligent optimisation technique with many
advantages such as fewer tuneable parameters and less depen-
dence on the set of initial conditions, compared to some of the
other intelligent techniques [19e21]. Additionally, the use of PSO
has been shown to reduce environmental impact over a systems
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lifetime by reducing CO2 emissions [22]. Software tools such as
HOMER (Hybrid Optimisation Model for Electric Renewables)
developed by the National Renewable Energy Laboratory, NREL-
USA) have also been applied to allow techno-economic sizing of
micro-power hybrid systems [23e25] and are freely available [26].
However, whilst such software tools are accompanied with excel-
lent Graphical User Interfaces (GUI's), they are largely used as
“black boxes” with some limited ability to parameterise. They are
also not self-adaptive nor capable of accounting for device tran-
sients such as start-up time or control set points (e.g. storage ca-
pacity thresholds), both of which affects system performance.

In relation to the optimisation of hydrogen systems, published
literature largely focusses on the use of pre-defined (static) PMS
(Power Management Strategies) [8,12,27e29] even when other
intelligent methods have been used [16]. This occurs despite
system-level inputs (renewables) are highly intermittent and out-
puts (electric load demand) also fluctuate. An effective PMS is
critical in hybridised systems as both the reliability of meeting
external loads as well as system performance are affected by the
PMS architecture and the control set-points within it [30e32].
Specifically, an optimised PMS can result in reduced payback time
[22], improved system reliability at the smallest total infrastructure
cost [33e39], and reductions to the cost of energy ($/kWhr) over
the system lifetime [35,40]. However, both the sizing of stand-alone
energy systems and optimisation of their PMS typically needs to
consider not only single objectives, such as minimising NPC (Net
Present Cost), but multiple objectives which are economic, envi-
ronmental or a combination of these three [41e43]. In this regard,
multi-objective optimisation has targeted minimising the cost of
energy by using different storage technologies [44], total hardware
costs over the system's lifetime [29,45] and operational emissions
[46,47], even though much of this research still encompasses diesel
generation. Little research has been done to apply multi-objective
optimisation to the PMS in renewably powered hybridised
(hydrogen) energy systems designed to meet both electric load and
desalinated water demand. Such elaborate optimisations are also
beyond the scope of software tools such as HOMER because unlike
PSO, such tools do not incorporate the dynamic characteristics of
hardware components which is necessary to give system simula-
tions the necessary realism as conditions fluctuate through the day.

Furthermore, few studies have attempted to compare the
resulting performance gains when using PSO, in a multi-objective
context to optimise both the PMS (Power Management Strategy)
and component size, against widely adopted software optimisation
tools such as HOMER. This type of research is worthwhile because
for much lower levels of complexity (single objective function op-
timisations), the use of PSO compared to HOMER can decrease
dependence on diesel generators by 10%, attain a lower NPC [39]
and yield cost of energy improvements [48]. However, these
earlier works have not accounted for the dynamic (time-resolved)
operational characteristics of energy system components, have not
considered systems which also sustain (small-scale) stand-alone
desalination systems and have also overlooked the need to
consider environmental impact (CO2 emissions). This can be
addressed through multi-objective optimisations like those
covered by the present study.

This paper extends our preliminaryworkwhereby PSOwas used
to optimise Power Management Strategies with only single objec-
tives [32]. In the present research, optimisation of both energy
system (component) sizing and the PMS is done for multiple
objective functions, and then compared to HOMER. The stand-
alone energy system considered in the present study is
completely powered by renewables and must meet two external
loads: (i) power generation (kWhr) and (ii) desalinated water
generation (litres). The two objective functions used to guide the

optimisation are: (i) minimising total Net Present Cost (NPC, $) and
(ii) CO2 emissions (kg/kWhr over a lifetime). The present research
also studies the effects of dynamic, versus static, water demand as
well as varying the scale of electric load and water storage capacity.
A secondary aim of this research is to also study the effects of Power
Management optimisations on device cyclability. The PSO algo-
rithm is implemented using MATLAB/Simulink (v.8.3) and the
simulations are performed on a desktop PC having an Intel i3
processor. The reader is referred to our earlier work for details of
the PSO methodology [32] which uses the optimised acceleration
parameters c1 ¼ 1.5 and c2 ¼ 1. Many of the energy system com-
ponents, featuring in the simulations, have already been experi-
mentally resolved through our earlier works [7,49]. Renewable data
profiles for a specific coastal location (Geraldton, Western
Australia) [50], having an abundant supply of salt water for RO
(Reverse Osmosis), are utilised throughout.

2. Methodology

Fig. 1 presents the structure of the hybrid energy system which
forms the focus of this study. Table 1 lists typical component data
used in the simulations (cost components) for PV panels, PEM fuel
cell(s), PEM electrolyser(s), DC/DC converter(s), metal hydride
canister(s) [51] as well as lead-acid batteries [52], reverse osmosis
unit(s) [53] andwater storage tank(s) [54] with their associated CO2

emission rate (kg CO2-eq/kWhr) [46,55]. This data is specified per
single unit, but the number of hardware units is derived through
the optimisation.

2.1. Electrical sub-system

This is responsible for converting solar energy to supply both
the electrical load demand and other energy system components.
Short-term energy storage (lead-acid batteries) are used for
meeting daily demands while long-term storage (hydrogen) helps
supplement battery capacity when seasonal or daily solar energy
fluctuationsmean short-term storage is insufficient to supply loads.
Lead-acid batteries are used in the present research because of their
lower capital costs compared to alternative technologies such as
nickelecadmium and Li-Ion [56]. Fig. 2 shows the normalised daily
variation of power and water demand as well as solar irradiance
over a year. Although the values plotted show daily totals, this is
derived using 15 min resolved data which itself is used in the
simulations. In these simulations, both external power and water
demand is also scaled (up/down) to help analyse the effects of
scalability. Cumulative power demand is scaled such that averaged
daily demand over an entire year is at three levels (1.5, 2.5 and 3.5
kWhr/day). Although the annual water required is kept fixed at
146 kL/yr, the simulation also consider the impact of assuming a
uniformly distributed equivalent daily rate (400 L/day over 365
days) versus a time-varying water profile as depicted in Fig. 2.
Furthermore, to satisfy this external water demand, the required
power is approximately 3e6 times that of the external electric load.

2.2. Desalination sub-system

This incorporates RO units plus water storage tanks designated
through their max storage capacity (H2Omax) and is responsible for
supplying potable (drinking) water as well as electrolysis, whereby
water is deionised using non-power consuming static cartridges.
The values for H2Omax are either 2 kL or 20 kL in the simulations.
Whilst many desalination techniques exist (multistage flash,
vapour compression and electro dialysis [57]), RO is chosen because
it is the most commonly integrated (non-thermal) desalination
technique in renewable energy systems [15,58e60]. Reverse
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