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This paper is concerned with the application of Kalman filter based methods for Fault Detection and
Identification (FDI). The original Kalman based method, formulated for bias faults only, is extended for
three more fault types, namely the actuator or sensor being stuck, sticky or drifting. To benchmark the
proposed method, a nonlinear buffer tank system is simulated as well as its linearized version. This

method based on the Kalman filter delivers good results for the linear version of the system and much
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worse for the nonlinear version, as expected. To alleviate this problem, the Extended Kalman Filter (EKF) is
investigated as a better alternative to the Kalman filter. Next to the evaluation of detection and diagnosis
performance for several faults, the effect of dynamics on fault identification and diagnosis as well as the
effect of including the time of fault occurrence as a parameter in the diagnosis task are investigated.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fault Detection and Identification (FDI, Isermann & Ballé, 1997)
deals with the timely detection and diagnosis of anomalies in
processes or systems and has gained attention since the 1990s.
Several philosophies have been adopted in the past, leading to a
wide range of available tools (Venkatasubramanian, Rengaswamy,
& Kavuri, 2003; Venkatasubramanian, Rengaswamy, Kavuri, & Yin,
2003; Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). A
rough classification of methods can be made according to whether
the applied methods are deductive or inductive in nature. A typi-
cal deductive method will be based on first-principles knowledge
while inductive methods are based on recognition of patterns in
process data sets, with roots in statistical theory (e.g. Principal
Component Analysis) or Artificial Intelligence (e.g. Artificial Neu-
ral Networks). Deductive methods, due to their assumption on
available first principles knowledge, tend to be more rigorous and
accurate in nature. However, the cost of accurate knowledge or
models may be prohibitive so that only inductive methods may
be achievable in practice. Quite naturally, hybrid approaches are
applicable, e.g. when first principles knowledge is available to some
extent but not for the whole system. Another way of categoriz-
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ing FDI methods may be based along the internal representations
used. For sure, quantitative representations are the most popu-
lar. The Kalman filter adopted for FDI in Prakash, Patwardhan, and
Narasimhan (2002) and further extended in this work is a quan-
titative method in the deductive category. Principal Component
Analysis is a quantitative method in the inductive category (Joliffe,
2002). A smaller segment of FDI methods is based on qualitative
representations. Examples of such methods in the deductive cat-
egory are Signed Directed Graphs (SDGs, Maurya, Rengaswamy,
& Venkatasubramania, 2004) and qualitative reasoning (Forbus,
1984; Kuipers, 1994). In the inductive category, a large variety of
time series trending methods is available (e.g., Akbaryan & Bishnoi,
2001; Bakshi & Stephanopoulos, 1994; Charbonnier, Garcia-Beltan,
Cadet, & Gentil, 2005; Dash, Maurya, & Venkatasubramanian, 2004;
Flehmig, Watzdorf, & Marquardt, 1998; Villez, 2007), yet little con-
sensus exists on their respective strengths and weaknesses.

The presented work is a result of an ongoing project on state
awareness for complex systems. The ultimate aim is to install tools
for proper identification of potentially harmful situations in safety-
critical systems. This aim fits into a larger vision on design of
resilient systems, i.e. systems that only degrade gradually or grace-
fully when subject to series of harmful events (Rieger, Gertman, &
McQueen, 2009). In this contribution, we focus on the extension
and critical evaluation of an existing method for Fault Detection
and Identification (FDI) which is based on the Kalman filter. This
methods finds itself in the deductive-quantitative section of the FDI
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Fig. 1. Scheme of the simulated tank system.

methods. This method has been tested successfully for fault detec-
tion and diagnosis (Prakash et al., 2002). In particular, the method
has been shown to allow proper detection and diagnosis of biases in
different actuator and sensor locations as well as correction of the
on-line model predictive control (MPC) scheme for identified faults
(Prakash, Narasimhan, & Patwardhan, 2005). However, using only
bias faults and the assumption on linearity may be considered lim-
iting. This study therefore concentrates on (1) the extension of the
method to allow the separate identification of stuck behavior, stic-
tion, bias and drifts in sensors and actuators and (2) the evaluation
of the method on both a non-linear system as well as its linearized
version. As such, the simulation study allows to evaluate whether
the method is applicable for non-linear systems. In what follows,
Materials and Methods will be explained first. Then, results will be
shown with broader discussions in separate sections. Finally, the
most important conclusions are summarized in the last section.

2. Materials and methods
2.1. Benchmark simulations

Two models are used to benchmark the developed methods for
FDI. Both are models of a buffer tank with a pipe connected at the
bottom of the tank and with one end open to the atmosphere. The
pipe is equipped with a valve. Fig. 1 shows a scheme of the system.
A feedback PI controller adjusts the valve position to achieve the
setpoint for the tank level based on the measurement of the tank
level. One of the models is a non-linear and more realistic version
of such a system. The other is the linearized version of this model,
obtained by linearization around the nominal operating point. The
following paragraphs explain the two models.

2.1.1. Non-linear system

The open-loop system can be written as a Differential Algebraic
Equation (DAE) with the tank level (h) as the dynamic state and
the outflow rate (qout) as the algebraic state. The valve position
(v) is a manipulated input and the inflow rate (gj,) a disturbance
input. Because the algebraic equation can be solved analytically,
one can rewrite the open-loop system model as a single Ordinary
Differential Equation (ODE) (Appendix A). The steady-state nominal
operation is defined by the tank level (h, =10 m) and valve open-
ing (v, = 50%), from which the corresponding steady state mean
inflow rate can be computed (g;,, =5.36 m3/s). All simulations are
started with this steady state condition. All parameter values of the
nonlinear model are listed in Appendix B.

2.1.2. Linear system

To obtain the second benchmark system, the nonlinear model
was linearized by means of evaluating the derivatives at the nom-
inal operating point (Appendix C). For this linearized system, the
use of the (linear) Kalman filter is theoretically optimal. The results
obtained with this linearized system will function as a reference for
evaluation of the results obtained in the non-linear case.

2.1.3. Introducing faults and noise

To test the FDI strategy, several fault classes were simulated for
both systems. In this paper, we consider a fault type a kind of symp-
tomatic behavior, irrespective of its location. A fault class is defined
as the unique combination of fault location and fault type. The sim-
ulated fault types are stuck behavior, stiction, bias and drift. These
four fault types are introduced in two locations, namely the valve
position and the tank level measurement. This leads to 8 differ-
ent fault classes. Stiction, particularly in valves, has been shown to
be relevant in an industrial context (Choudhury, Thornhill, & Shah,
2005; Srinivasan & Rengaswamy, 2008). However, its identification
in a context where other faults are possible has not been considered
yet. With u(t) the valve position signal delivered by the controller,
uq(t) the corrupted valve position, tr the time of fault occurrence
and & the fault parameter, the different models for the valve faults
are as follows:

No fault:  ug(t) = u(t)

Stuck: up(t) =up(t—-1)
Stiction:  up(t) = u(t) |h(t) = he(t =1)| > &
= up(t — 1) ey~ (e~ 1 <5 (D
Bias: up(t) =u(t)+46
Drift: up(t) =u(t)+4- (iaot);)

For the sensor, the equivalent models are obtained by replac-
ing u(t) and ug(t), with the true tank level, h(t), and the corrupted
tank level measurement, h(t), respectively. It is noted here that the
bias and drift fault types are additive while the stuck and stiction
faults are non-additive. This has important implications for fault
identification as will shown further.

The resulting corrupted signals (uft), ht)) as well as the input
flow rate (qin,) are subjected to white noise to obtain the actual
tank level measurement, the actual valve position and the actual
input flow rate (y(t), v(t) and gj,(t)) as follows:

y(t)=he(t)+eq, e;~N(0,0%)

u(t) =us(t) +ex, ex~N(0, o%) (2)

Qin(t) = Qin,o + €3, €3~N(0,0%)

Appendix B lists the applied values for the noise standard devi-
ations (o1, 07 and 03).

2.1.4. Simulated scenarios

To make sure that fault detection and diagnosis results are inde-
pendent of other faults, several short scenarios are simulated rather
than a single process history. Both the nonlinear and linear system
are simulated repeatedly for 200s. This is done for combinations
of several fault scenarios, which describe the simulation of faults,
and setpoint scenarios, which describe the time profile of the tank
level setpoint.

Fault scenarios. All faults are introduced at 101 s in the simula-
tion. The stiction, bias and drift faults are introduced with three
different parameter values, namely 5, 10 and 15 % of the value at
nominal operating point. A faultless scenario is also simulated. A
total of 21 fault scenarios thus results. Table 1 summarizes these
scenarios and provides a fault class index (0-8) for all the fault
classes.

Setpoint scenarios. Each of the above fault scenarios is repeated
for two different setpoint scenarios. In the first scenario, SP1, a set-
point change of 10% is introduced at the start of the simulation (1s).
In these cases, the controller dynamics have settled by the time that
the fault is introduced. In the other scenario, SP2, the same setpoint
changeisintroduced at 101 sin the simulation, along with the intro-
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