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a b s t r a c t

This paper presents a discretize-then-relax method to construct convex/concave bounds for the solutions
of a wide class of parametric nonlinear ODEs. The algorithm builds upon Taylor model methods recently
developed for verified solution of parametric ODEs. To enable the propagation of convex/concave state
bounds, a new type of Taylor model is introduced, in which convex/concave bounds for the remainder
term are computed in addition to the usual interval bounds. At each time step, a two-phase procedure is
applied: a priori convex/concave bounds that are valid over the entire time step are calculated in the first
phase; then, pointwise-in-time convex/concave bounds at the end of the time step are obtained in the
second phase. This algorithm is implemented in an object-oriented manner using templates and operator
overloading. It is demonstrated and compared to other available approaches on a selection of problems
from the literature.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to compute tight enclosures for the solutions x of
parametric ordinary differential equations (ODEs) of the form

ẋ(t) = f(x(t),p), t ∈ (t0, tf ], (1)

x(t0) = h(p), (2)

with p ∈ P where P:=[pL,pU] ⊂ Rnp is an interval vector, is central
to many deterministic global optimization methods for dynamic
systems. These enclosures are needed to compute lower or upper
bounds for general objective or constraint functionals such as

F(p) = �(x(tf ),p) +
∫ tf

t0

 (x(t),p)dt,

which in turn can be exploited by branch-and-bound algorithms
and their variants (Chachuat & Latifi, 2003; Esposito & Floudas,
2000; Lin & Stadtherr, 2007a; Papamichail & Adjiman, 2002; Singer
& Barton, 2006b). Other related applications are in the field of
mixed-integer dynamic optimization (MIDO) (Chachuat, Singer,
& Barton, 2005), optimization of hybrid discrete/continuous sys-
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tems (Lee & Barton, 2008), bilevel dynamic optimization (Mitsos,
Chachuat, & Barton, 2009b), and guaranteed estimation (Kieffer &
Walter, 2010).

Two principal classes of methods have been proposed in the
literature to compute an over-approximation of the actual ODE
solution set. The first class proceeds by constructing an auxiliary
system of ODEs, the solutions of which have the desired properties.
General procedures have been developed that build upon Müller’s
theorem (Walter, 1970) for computing interval bounds (Harrison,
1977; Papamichail & Adjiman, 2002; Scott & Barton, 2010; Singer
& Barton, 2006a). Efficient procedures have also been recently
devised for constructing auxiliary dynamic systems that describe
affine bounds (Singer & Barton, 2006a) or convex/concave bounds
(Scott et al., 2010a) with respect to the parameters p, pointwise in
the integration variable t. A limitation of these methods, however,
is their sensitivity to the wrapping effect and to the dependency
problem that ultimately lead to an explosion of the enclosure sizes.
Another limitation is tied to the use of non-verified numerical
methods for solving the auxiliary dynamic systems, that may result
in invalid bounds. Recently, the use of hybrid methods has been
investigated to address this latter deficiency (Ramdani, Meslem, &
Candau, 2009).

The second class builds upon verified solution methods for ODEs
to compute an over-approximation of the actual solution set at dis-
crete grid points tk ∈ [t0, tf ]. Here, discretization is performed prior
to the bounding step. Traditional interval ODE methods proceed in
two phases at each grid point (Nedialkov, Jackson, & Corliss, 1999),
namely the computation of an a priori enclosure, followed by the
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computation of a refined enclosure. They have the ability to system-
atically account for truncation errors as well as built-in capabilities
to mitigate the wrapping effect. Recently, Sahlodin and Chachuat
(2010) have presented an extension of this approach, which yields
convex and concave bounds that are guaranteed to be tighter than
the aforementioned interval bounds. Lin and Stadtherr (2007b)
have also extended the two-phase approach by using Taylor models
(Makino & Berz, 2003) instead of interval bounds, thereby obtaining
large improvements. Alternative methods for the verified solu-
tion of ODEs that employ Taylor models have been developed by
Berz and Makino (2006); see also (Eble, 2007; Neher, Jackson, &
Nedialkov, 2007).

Despite these advances, only relatively small dynamic opti-
mization problems can currently be addressed in reasonable
computational time using state-of-the-art deterministic global
dynamic optimization methods. The lack of reliable and tight
bounds for parametric ODEs still appears to be the main bottle-
neck and calls upon further developments. The focus in this paper
is on the second class of methods. A new bounding technique is
developed, whereby the two recent extensions of the two-phase
approach to propagate Taylor models (Lin & Stadtherr, 2007b) and
convex/concave bounds (Sahlodin & Chachuat, 2010) are unified.
To enable it, a new type of Taylor model is introduced, in which
convex/concave bounds for the remainder term are computed in
addition to the usual interval bounds. In so doing, one allies the
benefits of both approaches: the ability of Taylor models to miti-
gate the dependency problem (Makino & Berz, 1999) and to tackle
dynamic systems that are highly nonlinear in the parameters on
one hand; and the use of convex/concave relaxations that typically
greatly enhances convergence speed over simple interval bounds
in deterministic global optimization on the other hand (Kearfott,
2006; Tawarmalani & Sahinidis, 2002).

The remainder of the article is organized as follows. In the
next section, background on bounding methods is provided,
including interval analysis, Taylor models and convex/concave
relaxations. The two-phase approach for verified solution of ODEs
and its recent extension to the propagation of Taylor models are
described in Section 3, and special care is taken to present those
approaches in a concise, unified way. In Section 4, a new bounding
technique combining Taylor models and convex/concave relax-
ations is introduced, then this technique is used to develop an
improved state-relaxation algorithm for parametric ODEs. This new
convex/concave relaxation algorithm is demonstrated and com-
pared to other available approaches for a selection of problems
from the literature in Section 5. Finally, Section 6 concludes the
paper.

2. Interval analysis, Taylor models, and convex/concave
relaxations

2.1. Interval analysis

The closed interval denoted by [a, b] is the set of real variables
given by {x∈R : a ≤ x ≤ b}. Throughout this paper, the term inter-
val is understood as closed interval and the convention of denoting
intervals by capital letters is adopted. The width, the midpoint,
and the interior of the interval X = [a, b] are w(X) = b− a, m(X) =
(1/2)(a+ b), and int(X) = {x∈X : a < x < b}, respectively.

Vectors are represented in boldface, and equalities/inequalities
between vector quantities are understood component-wise. The
width of an interval vector is the largest of the widths of any of its
component intervals, while the mid-point of an interval vector is
the vector of the mid-points of its component intervals.

Basic arithmetic (binary) operations between two interval vari-
ables X and Y are defined as X♦Y = {x♦y : y∈Y, z ∈ Z}, where ♦
denotes any of the binary operations +, −, × or ÷. Likewise, uni-
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Fig. 1. Illustration of Taylor models.

variate intrinsic functions of interval variables can be defined by
treating those as unary operations.

The class of factorable functions (McCormick, 1976), also fre-
quently referred to as the class FC of functions in the literature
(Moore, Kearfott, & Cloud, 2009), is considered throughout. Fac-
torable functions are those that are defined by a finite recursive
composition of binary sums, binary products, and a given library
of univariate intrinsic functions. They cover an extremely inclusive
class of functions, containing nearly every function which can be
represented finitely on a computer by means of a code list or a
computational graph.

In interval analysis, natural interval extensions can be used for
computing bounds on the range of any factorable function for given
bounds on their variables; other, more refined, interval forms can
also be applied to factorable functions, including the centered and
the mean-value forms to name just a few. The interested reader
is referred to the literature for a thorough description of interval
analysis (Alefeld & Mayer, 2000; Moore et al., 2009).

In performing interval computations, some overestimation is
almost always systematic, due to both the wrapping effect and the
dependency problem (Moore et al., 2009). The wrapping effect is
a result of the actual solution set with an arbitrary shape being
wrapped in a box-shaped enclosure. The dependency problem, on
the other hand, arises from the inability of interval analysis to
recognize multiple occurrences of the same variable in a given
expression; as a classical example, consider the natural interval
extension of the simple expression x − x with x∈ [−1,2] which is
[−1, 2] − [−1, 2] = [−3, 3], while the actual enclosure set is of course
[0, 0].

2.2. Taylor models

Taylor models were introduced to reduce the overestimation in
interval analysis, by combining interval arithmetic with symbolic
computations (Berz, 1997; Makino & Berz, 1999; Makino & Berz,
2003). Consider a function f[i] defined on the set P ⊂ Rnp , and let
there be an np-variate polynomial Pf of order q and an interval
Rf :=[rL

f
, rU
f

] such that:

f (p) ∈Pf (p) + Rf , for each p ∈ P.

Then, Tf :=Pf + Rf is called a qth-order Taylor model of f on P.
In this context, P and Rf are known as the domain interval and the
remainder interval of Tf , respectively. Following the work of Neher
et al. (2007), no restrictions are imposed on the multivariate poly-
nomial Pf or on the width of the remainder interval herein. The
Taylor model Tf of a univariate function f on the interval [pL, pU] is
depicted in Fig. 1; observe, in particular, that Tf encloses f between
two hypersurfaces.
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