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This paper presents the thermodynamic frameworks to describe the dynamic uptakes of water vapor on
various sizes and layers of silica gels for adsorption cooling applications. The proposed kinetic formu-
lation is developed from the rigor of the partition function of each adsorptive sites and the kinetics
theory of adsorbate molecules with the analogy of Langmuir kinetics. The simulation results calculated
from the proposed formulation are compared with experimentally measured kinetics data of various

single and multi layers configuration of silica gels—water systems. An interesting and useful finding has

Keywords:
Adsorption
Chiller

Kinetics

Partition function
Statistics

Silica gel—water

adsorbents.

been established that the proposed model is thermodynamically consistent from the Henry's region to
the saturated pressure, and also is connected with the surface structural heterogeneity factors of

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the adsorption chiller (ADC) utilizes the
adsorbent—adsorbate characteristics to achieve useful cooling ef-
fects at the evaporator by the amalgamation of two processes
namely ‘adsorption-triggered-evaporation’ and ‘desorption-acti-
vated-condensation’ [1]. The ADC works as a batch wise process i.e.
adsorption and desorption occur alternatively in the adsorption
bed and is also time dependent [2—6]. So, the adsorption rate or
kinetic equations are widely used to describe adsorption data at
non-equilibrium conditions, and are significant to investigate the
basic understanding of adsorption process that ranges from tran-
sient to the cyclic steady state. The simplest kinetics equation is
commonly expressed by dé;/dt = «(" — 6;), where 6; is the amount
of adsorbate uptake at time t, 6" is its value at equilibrium, and « is
the temperature dependent constant. This rate equation indeed is
in line with the concept of LDF (linear driving force) model or the
first order kinetic equation [7,8]. The basic mathematic model for
the diffusive transport of adsorbates within complex adsorbent
structures is the Fick's equations [9], and is difficult to solve
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analytically under practical situation [9,10]. The LDF model [11]
correlates experimental data in simple equation forms [11—13]
employing data fitting parameters. The LDF model assumes that
the adsorbent particle temperature is uniform, and its thermal
conductivity is infinity, which means that the heat transfer effect is
neglected. The LDF models also involve the intra-particle diffusion
for mass transfer process. The physical evidence of the LDF coeffi-
cient is obtained thermodynamically from Langmuirian kinetics. It
should be noted here that the Langmuir kinetics [ 14—18] are used to
describe the non-equilibrium conditions of adsorbent + adsorbate
system. However, the Langmuir isotherm is limited to one site oc-
cupancy adsorption onto the homogeneous adsorbent surface.
Moreover, the Langmuir isotherm gives inconsistency thermody-
namic behavior at higher pressure ranges [19].

Bhatia et al. [9] gave a comprehensive theoretical perspective of
molecular transport in nanopores with the proposal of an oscillator
model and a distributed friction models. Sircar and Hufton [12]
analyzed the connection between the linear driving force (LDF)
model and the FD (Fickian Diffusion) model but the detailed char-
acteristics of local adsorption kinetic model are neglected during
integrations. The Fick's differential equation is difficult to solve
analytically under practical situation, because the diffusivity, which
considers sophisticate diffusion mechanisms within complex
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adsorbent structures, is highly computational time consuming to
determine its integration form over the complete time and space
domain [12].

Based on Langmuirian adsorption theory, Azizian [10] analyzed
the general analytical solution of two extreme cases theoretically
with high initial concentration of adsorbate, and lower initial
concentration of solute, where the first one converts into a pseudo-
first-order LDF model, while the latter follows a pseudo-second-
order equation. Liu and Shen [8] also gave a similar conclusion of
Azizian [10]. Employing Langmuir model, Marczewski [17] derived
the integrated form of kinetics Langmuir equation (IKL), and
compared it with the nth-order, mixed 1, 2-order, and multi-
exponential kinetic equations. Marczewski et al. [18] also pro-
posed a generalization form of Langmuir kinetics (gIKL), and LF
(Langmuir—Freundlich) isotherm was applied to describe the non-
ideal behavior of adsorption phenomena. Later, Azizian and Bashiri
[13] developed the adsorption kinetics with SRT (statistical rate
theory) approach, and studied the solute adsorption at the solid/
solution. The MPFO (modified pseudo-first-order) kinetic equation,
proposed by Yang and Al-Duri [20], was interpreted theoretically
[13]. By applying different adsorptive site energy distribution,
Rudzinski and Panczyk [21] derived the power form of Elovich
equation from Langmuir—Freundlich and the Temkin isotherms.
Corresponding to practical experimental conditions, Loh et al.
proposed [22] a theoretical framework to describe the adsorption
kinetics for the non-isothermal system. Babrao and Jiang [23]
investigated the transport diffusivities of CO, and CHy in silicalite,
Cies schwarzite, and IRMOF-1 employing molecular dynamics
simulation, and it was found that the computational results match
well with the Maxwell—Stefan formulation for pure CO; and CHa.
To utilize the adsorption kinetics with adsorption chiller system,
Aristov et al. [15,16] studied the water adsorption kinetics on silica
gel (type Fuji RD) under real operating conditions with the opti-
mization of various loose grains silica gel configuration.

Up to now, no significant attempts are established to explain the
theoretical origins of adsorption rate equations for a single
component adsorbent + adsorbate system in detail, and the current
understanding of adsorption kinetics is not more established as
compared with the theoretical description of adsorption isotherms.
The present study thus attempts to focus more on the theoretical
origins of the adsorption rate equation from the thermodynamics
foundation [24] of adsorption uptakes that varies from the Henry's
region (Pressure, P — 0) to the saturated pressure (Ps) values. The
proposed adsorption kinetics formulation (i) is connected with the
pore structures or the heterogeneity factors of adsorbent materials
and the isosteric heat of adsorption at zero surface coverage (Q,;),
and (ii) also calculates the adsorption and desorption rates of water
vapor onto single and multi-layers of loose grain configuration of
silica gel [25,26]. In this paper, we have shown how the number of
layers and the adsorbent grain size affect the water adsorption
dynamics under conditions close to the isobaric conditions of
adsorption cooling cycle [16].

2. Langmuir Kinetics model

For better understanding, we start with the kinetics model of
Langmuir [27,28]. This is given by

de

d—tf = kagsPe(1 — 0¢) — Kgesbt, 1)
where 6; is the fraction of uptake as a function of time, 6; = q;/qm.
Gm is the maximum amount of adsorbate uptake. k.45 and kg, are
adsorption and desorption rate coefficients.P; is the simultaneous
equilibrium pressure of the adsorbed phase.

At equilibrium dé;/dt =0, and 6; = ¢, equation (1) gives the
Langmuir's isotherm as:

KP

“1+KP’ (2)

where K = kg5 /kqes. Under situation where the initial pressure Py,;
differs no much from the eventually equilibrium pressureP, that
isP=P;,;;, equation (1) turns to be the pseudo-first-order model [10]
or

do;

E*a(ﬁ—ﬁt), (3)
where « = kygsP + kges. Both equations (1) and (3) give the same
adsorption kinetics expression analytically and is written as

0 = 0(1 - e""t) +e g (4)

with the boundary conditions of 6; = 6;;; at t =0, and 6; = 6 at
t = oo.

3. Proposed theory of adsorption kinetics

The adsorbent—adsorbate system consists of equivalent and
distinguishable adsorptive sites, where any number, s, from 0 to
maximum m, of molecules can be adsorbed [29]. Considering van
der Waals force as short-range for physical adsorption, the partition
function of each isothermal site is q(s) = g°(1). The absolute activity
is given by A = exp(u/kT), where u defines the chemical potential of
the adsorbed molecules and it comprises the bulk chemical po-
tential uges and the external adsorbent wall potential vex, or
® = gas — vext[30]. The grand partition function of each individual
adsorptive site is [29]:

Em=q0) +q(1)2+ - +qm)A" => q(s)*® (5)

m
s=0
where q(0) = 1. The average number of molecules within each
adsorptive site can be presented by Ref. [29]:

5— A(aln gm) _ E'Sn:O Sq(S)AS _ 21511:0 S{q(])/\}s (6)
04 Yo q()X  Xlo{q(1)ay

From the definition of the Helmholtz free energy [31], we
haveA(N,V,T) = —kT Inq(N,V,T), where V is the volume of N
molecules at temperature T. The Grand potential of one particle is
then expressed by ¢ = —kpT In{q(1)2} =A(1,v1,T) — ugas + vext
[30,32], where kg is the Boltzmann constant, T is the absolute
temperature and v; is the volume occupied by 1 particle. As a result,
we have

q)a= exp{ - (A—MgasJFVext)/kBT}- (7)
Using u® as the reference chemical potential of the gas at
reference pressureP®, it is possible to show
tigas = 1€ + kgT In(P/P?) to get
q(1)2 = exp{(— A+ u® + kgT In(P/P?) — vext) /kgT}
= exp{ (kaT — vext — hyz (1)) /ksT } (P/Py) ®)
= exp{ (RT — Vext — hfg) / RT}(P/PS)
Here, Ps is the saturated pressure. A — u® = —kgT indicates the

work done of the system, and R(= Nykg) is the gas constant. The
isosteric heat of adsorption at zero surface coverage is [1,30]
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