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a b s t r a c t

This paper is concerned with global optimization of Bilinear and Concave Generalized Disjunctive Pro-
grams. A major objective is to propose a procedure to find relaxations that yield strong lower bounds.
We first present a general framework for obtaining a hierarchy of linear relaxations for nonconvex Gen-
eralized Disjunctive Programs (GDP). This framework combines linear relaxation strategies proposed
in the literature for nonconvex MINLPs with the results of the work by Sawaya and Grossmann (2009)
for Linear GDPs. We further exploit the theory behind Disjunctive Programming by proposing several
rules to guide more efficiently the generation of relaxations by considering the particular structure of
the problems. Finally, we show through a set of numerical examples that these new relaxations can sub-
stantially strengthen the lower bounds for the global optimum, often leading to a significant reduction
of the number of nodes when used within a spatial branch and bound framework.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Generalized Disjunctive Programming (GDP), developed by
Raman and Grossmann (1994), has been proposed as a framework
that facilitates the modeling of discrete-continuous optimization
problems by allowing the use of algebraic and logical equations
through disjunctions and logic propositions that are expressed
in terms of Boolean and continuous variables. In order to take
advantage of existing solvers (Bonami et al., 2008; Kesavan,
Allgor, Gatzke, & Barton, 2004; Leyffer, 2001; Sahinidis, 1996;
Viswanathan & Grossmann, 1990; Westerlund & Pettersson, 1995),
GDPs are often reformulated as MILP/MINLP problems by using
either the Big-M (BM) (Nemhauser & Wolsey, 1988), or the Convex
Hull (CH) (Lee & Grossmann, 2000) reformulation. It is important to
note that GDP problems can always be reformulated as an MINLP.
However, these reformulations are not unique and may have asso-
ciated relaxations that are not very tight, consequently having an
adverse effect on the efficiency of the algorithm that is used. In gen-
eral, the tighter the relaxation of the reformulation and the fewer
the number of variables and constraints, the smaller the computa-
tional effort is.

In the particular case of nonconvex GDP problems the direct
application of traditional algorithms to solve the reformu-
lated MINLPs such as Generalized Benders Decomposition (GBD)
(Benders, 1962; Geoffrion, 1972) or Outer Approximation (OA)
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(Duran & Grossmann, 1986), may fail to find the global optimum
since the solution of the NLP subproblem may correspond to a
local optimum and the cuts in the master problem may not be
valid. Therefore, specialized algorithms should be used in order
to find the global optimum (Floudas, 2000; Horst & Tuy, 1996,
Tawarmalani & Sahinidis, 2002). Nonconvex GDP problems with
bilinear constraints are of particular interest since these arise in
many applications, for instance, in the design of pooling prob-
lems (Meyer & Floudas, 2006), in the synthesis of integrated water
treatment networks (Karuppiah & Grossmann, 2006), or generally,
in the synthesis of process networks with multicomponent flows
(Quesada & Grossmann, 1995b). In addition, nonconvex GDP prob-
lems with concave constraints frequently arise when nonlinear
investment cost functions are considered (Turkay & Grossmann,
1996). To tackle this problem, Lee and Grossmann (2003) proposed
a global optimization method that first relaxes the bilinear terms by
using the convex envelopes of McCormick (1976) and the concave
terms by using linear under-estimators. The convex hull (Balas,
1985) is then applied to each disjunction. This formulation is then
used within a spatial branch and bound technique in which the
branching is first performed on the Boolean variables followed by
the continuous variables. While the method proved to be effective
in solving several problems, a major question is whether one might
be able to obtain stronger lower bounds to enhance the efficiency
for globally optimizing GDP problems.

Sawaya and Grossmann (2009) have recently established new
connections between Linear GDP and the Disjunctive Programming
theory by Balas (1979). As a result, a family of tighter reformulations
has been identified. These are obtained by performing a sequence
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of basic steps on the original disjunctive set (i.e. each basic step
is characterized by generating a new set of disjunctions by inter-
secting the former), bringing it to a form closer to the Disjunctive
Normal Form (DNF), and hence tightening its discrete relaxation
(Balas, 1985). It is important to note that each intersection usually
creates new variables and constraints. Therefore, it is important to
recognize when it may be useful to make these intersections. Some
general rules are described in this work.

In this work we build on the work by Sawaya and Grossmann
(2009) exploiting the newly discovered hierarchy of relaxations in
order to solve more efficiently nonconvex GDP problems, particu-
larly, with bilinearities and concave functions in their constraints,
namely Bilinear GDP and Concave GDP.

This paper is organized as follows. In Section 2 we present the
general structure and particular properties of the problems for
which we aim at finding stronger relaxations (i.e. Bilinear GDP and
Concave GDP). In Sections 3 and 4, a general theoretical framework
is proposed for obtaining tighter linear relaxations efficiently for
nonconvex GDPs. The implementation of this framework is then
illustrated in Section 5 by finding a relaxation for two small exam-
ples, one of them formulated as a Bilinear GDP and the other as a
Concave GDP. Section 6 outlines the implementation of the tighter
reformulation within a spatial branch and bound procedure whose
performance is compared with current methodologies (i.e. Lee &
Grossmann, 2003) in Section 7.

2. Nonconvex Generalized Disjunctive Programs

The general structure of a nonconvex GDP can be represented
as follows (Lee & Grossmann, 2000; Raman & Grossmann, 1994;
Turkay & Grossmann, 1996):

Min Z = f (x) +
∑
k ∈ K

ck

s.t. gl(x) ≤ 0, l ∈ L

∨
i ∈ Dk

⎡
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Yik

rj
ik

(x) ≤ 0 j ∈ Jik

ck = �ik(x)

⎤
⎥⎦ k ∈ K (GDPNC )

˝(Y) = True

xlo ≤ x ≤ xup

x ∈ Rn, ck ∈ R1, Yik ∈ {True, False}

where f: Rn → R1 is a function of the continuous variables x in the
objective function, gl: Rn → R1, l ∈ L, belongs to the set of global
constraints, the disjunctions k ∈ K, may be composed of a num-
ber of terms i ∈ Dk, that are connected by the OR operator. In
each term there is a Boolean variable Yik, a set of inequalities
rj
ik

(x) ≤ 0, rj
ik

: Rn → R1, and a cost variable ck. If Yik is true, then

rj
ik

(x) ≤ 0 and ck = � ik(x) are enforced; otherwise they are ignored.
Also, ˝(Y) = True are logic propositions for the Boolean variables.
As indicated in Sawaya and Grossmann (2009), we assume that the
logic constraints ∨

i ∈ Dk

Yik are contained in ˝(Y) = True. In a noncon-

vex GDP, f, rik, � ik and/or gl are nonconvex functions.
Bilinear GDPs (BGDP) are the first class of nonconvex GDP prob-

lems that we address in this paper. A BGDP is a nonconvex GDP
where the functions in the constraints only contain bilinear and

linear terms. In general we can represent a BGDP as:
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˝(Y) = True

xlo ≤ x ≤ xup

x ∈ Rn, ck ∈ R1, Yik ∈ {True, False}

where some of the matrices Ql, Q j
ik

are indefinite

Remark 1. Note that if all matrices Ql, Q j
ik

are positive semidefi-
nite then the continuous relaxation of the problem is convex and
no global optimization methods are required to find the optimal
solution. Without loss of generality we consider the diagonal of the
matrices to be 0.

Remark 2. To make the notation clearer, we assume � ik to be
constant in (GDPB).

In order to solve (GDPB) with a spatial branch and bound method,
a convex GDP relaxation is required. A valid Linear GDP relaxation
(see Proposition 1) can be obtained by finding suitable under- and
over-estimating functions of the nonconvex constraints. Although
this set of estimators is not unique, we propose to use the convex
envelopes proposed by McCormick (1976) for bilinear terms (see
also Al-Khayyal & Falk, 1983).

Defining X = xxT we can find a relaxation for each term Xij = xi xj
as:
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i = 1, 2, . . . , n, i < j < n + 1

This leads to the following Linear GDP,
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