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a b s t r a c t

A new continuation method, which applies a new homotopy that is a combination of the fixed-point and
Newton homotopies (FPN), is developed for seeking all real solutions to a nonlinear equation, written
as f(x) = 0, without having to specify a bounded interval. First, the equation to be solved is multiplied by
(x − x0), where x0 is the starting value, which is set to zero unless the function does not exist at x0, in which
case x0 becomes a tracking initiation point that can be set arbitrarily to any value where the function
does exist. Next, the new function, (x − x0)f(x) = 0, is incorporated into the FPN homotopy. The initial step
establishes a single bifurcation point from which all real roots can be found. The second step ensures a
relatively simple continuation path that consists of just two branches that stem from the bifurcation point
and prevents the formation of any isola. By tracking the two branches of the homotopy path, all real roots
are located. Path tracking is carried out with MATLAB, using the continuation toolbox of CL MATCONT,
developed by Dhooge et al. (2006), based on the work of Dhooge, Govaerts, and Kuznetsov (2003), which
applies Moore–Penrose predictor-corrector continuation to track the path, using convergence-dependent
step-size control to negotiate turning points and other sharp changes in path curvature. This new method
has been applied, without failure, to numerous nonlinear equations, including those with transcendental
functions. As with other continuation methods, f(x)must have twice-continuous derivatives.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models of steady-state chemical processes con-
sist of systems of algebraic and/or transcendental equations. When
all equations in the system are linear and independent of each
other, only a single solution exists, which is readily obtained by
robust numerical matrix methods. However, more commonly, the
system of equations contains some nonlinear equations. In that
case, multiple solutions may exist, where the unknowns may be
real positive, real negative, and/or complex–conjugate pairs. When
the unknowns are absolute temperature, absolute pressure, flow
rate, and/or composition variables, only solution sets consisting of
real positive values are of interest. When the composition variables
are mole, mass, or volume fractions, only real positive values in the
region bounded by 0 and 1 are of interest.

Occurrences of multiple solutions of interest in chemical engi-
neering problems have been known for decades. These include:

1. Cubic equations of state, such as the Redlich–Kwong equa-
tion, where, depending on the temperature, pressure, and
mixture composition, there exists three real-positive roots or
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one real positive root and one pair of complex–conjugate
roots.

2. Fluid flow through a converging–diverging nozzle, where, for
a sufficiently large flow rate, one real-positive solution is for
subsonic conditions in the converging section of the nozzle and
another real-positive solution is for supersonic conditions in the
diverging section of the nozzle.

3. Underwood equations for component distribution from the feed
to the distillate and bottoms at minimum reflux and infinite
stages, where one real-positive solution exists between each pair
of ordered relative volatilities.

4. Liquid–liquid equilibrium compositions when using the NRTL or
UNIQUAC activity coefficient equations, where more than one
set of real-positive mole fractions between 0 and 1 exist.

5. Adiabatic CSTR reactor with a single, homogeneous, exothermic
reaction, where three real-positive conversions may exist.

6. Effectiveness factor for a highly exothermic reaction in a porous
catalyst, where three real-positive values of the factor may exist.

For each of these classic cases, robust methods have been
devised to compute the multiple solutions. For example, the well
known analytical solution to the three roots of a cubic equation can
be applied to the cubic equation of state.

Prior to the late 1970s, the possible existence of multiple solu-
tions in component-separation operations, e.g. distillation, was
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not imagined, despite the nonlinear nature of the equations used
to model the operations. However, starting with a discovery by
Magnussen, Michelsen, and Fredenslund (1979) for heterogeneous
azeotropic distillation, multiple solutions have been found for a
wide variety of separation operations, including: isothermal flash of
a multicomponent system, binary distillation, multicomponent dis-
tillation, interlinked systems of distillation columns, homogeneous
azeotropic distillation, heterogeneous azeotropic distillation, reac-
tive distillation, temperature-swing adsorption, pressure-swing
adsorption, membrane separation, and isothermal, continuous
MSMPR crystallization.

When considering the possibility of multiple solutions, it is
worthwhile to recognize the three types of multiplicity, as dis-
cussed by Gani and Jorgensen (1994):

1. Output multiplicity, where all input variables are specified and
two or more sets of output variables are found.

2. Input multiplicity, where one or more output variables are spec-
ified and two or more sets of unspecified input variables are
found.

3. Internal-state multiplicity, where two or more sets of internal
conditions or profiles are found for the same values of the input
and output variables.

All three types of multiplicity have been found for component-
separation operations.

Usually, multiplicity occurs only for certain sets of specifications
and only over restricted ranges of certain parameters. Often, sets
of multiple solutions contain both stable and unstable solutions.
One or more of the stable solutions is clearly superior for practical
application and one or more of the other stable solutions is trivial
or very undesirable for practical application. For design purposes,
it is important to be aware of the possibility of multiplicity and
to discover all multiple solutions within the practical domain of
operating variables.

Numerical methods that seek to find multiple solutions are:

1. Newton’s method with deflation, e.g. Press, Flannery, Teukolsky,
and Vetterling (1992).

2. Parallel-path homotopy-continuation methods for systems of
polynomial equations, which use Bezout’s theorem for deter-
mining the maximum number of multiple solutions and finds all
solutions, real and positive, e.g. Morgan (1987).

3. Global homotopy-continuation methods, which attempt to find
all sets of real solutions, e.g. references below.

4. Interval Newton method with generalized bisection, which
locates all real roots within specified intervals of the unknowns,
e.g. Kearfott and Novoa (1990).

5. Global terrain methods, which consist of a series of downhill,
equation-solving computations and uphill predictor-corrector
calculations to find all physically meaningful solutions and sin-
gular points, e.g. Lucia and Feng (2002).

6. Deterministic branch-and-bound method that transforms the
system of equations into a global optimization problem, e.g.
Maranas and Floudas (1995).

7. Methods using cellular exclusion tests, e.g. Georg (2003).

Method 1 is unreliable. Method 2 is very reliable and easy to use,
but is restricted to polynomial equations. Methods 4–7 are reliable,
but require the specification of bounded intervals.

Here, we concentrate on Method 3, which has been discussed
and applied by a number of investigators, including Keller (1977,
1978), Chow, Mallet-Paret, and Yorke (1978), Garcia and Zangwill
(1979), Allgower and Georg (1980), Watson (1986), Wayburn and
Seader (1987), Allgower and Georg (1987), Kuno and Seader (1988),
Seader et al. (1990), Sun and Seider (1995), Watson, Sosonkina,

Melville, Morgan, and Walker (1997), Kuznetsov (1998), Jalali and
Seader (1999), Bausa and Marquardt (2000), Gritton, Seader, and
Lin (2001), Wu (2005), and Imai, Yamamura, and Inoue (2005). In
this paper, only a single nonlinear algebraic and/or transcenden-
tal equation is considered, and a new homotopy is introduced and
applied to the determination of all real roots. Unlike the method of
Gritton, Seader, and Lin, the homotopy path of our method never
consists of branches that are only connected at opposite infinities,
or by branches in the complex domain. Our new homotopy only
consists of one path, which is quickly tracked in the forward and
backward directions, called Branches 1 and 2, from the starting
point or a tracking initiation point. In a subsequent paper, our new
homotopy is extended to determine all real solutions to systems of
nonlinear algebraic and/or transcendental equations.

2. The new homotopy (FPN)

A widely used homotopy, H(x, t), consists of a linear combi-
nation of two real functions: f (x), whose zeroes are sought; and
G(x), a function for which a zero is known or readily selected or
obtained. Both functions must be smooth with twice-differentiable
derivatives. Thus,

H(x, t) = tf (x) + (1 − t)G(x) = 0 (1)

where t, the homotopy parameter, allows tracking of a solution path
that connects the starting point, x0, at t = 0, to all x∗

i
, which are all

solutions of f (x) = 0. Using numerical continuation, the parameter
t is gradually varied, starting from t = 0 and without being confined,
leading to a series of solutions to Eq. (1). Whenever the homotopy
path crosses t = 1, a solution to f (x) = 0 is found.

When attempting to determine all roots of f (x) = 0, the choice of
G(x) can be important. The three most widely cited G(x) functions
are the fixed-point (FP) function,

G(x) = (x − x0), (2)

the affine function, which adds a factor, A, to the FP function to
improve scaling in the homotopy function,

G(x) = A(x − x0), (3)

where A is often taken as the derivative of f(x) evaluated at x0, and
the Newton (N) function,

G(x) = f (x) − f (x0) (4)

When Eqs. (2) or (3) are applied to Eq. (1), the homotopy is satis-
fied by only one root at t = 0, the usual starting point. However, the
path can consist of branches that are only connected at opposite
infinities or by branches in the complex domain. Kuno and Seader
(1988) present two methods for avoiding the infinity problem. One
method involves a criterion for establishing a starting point; but
the criterion cannot always be implemented. The second method
involves an auxiliary function, which, however, adds an additional
equation to the one to be solved. When Eq. (4) is applied, f(x) = f(x0)
at t = 0 and multiple starting points and multiple branches may
exist. Here, for reasons discussed below, we introduce a new for-
mulation of the homotopy function of Eq. (1), which incorporates
a new G(x) function. At first, the new homotopy appears to be con-
siderably more complicated than Eq. (1) with Eqs. (2), (3), or (4).
However, after simplification, the new homotopy is less complex,
avoids the disadvantages of the fixed-point, affine, and Newton
functions, and possesses superior characteristics for tracking the
homotopy path to determine all solutions to f (x) = 0. We refer to
the new homotopy, as the FPN homotopy because it uses elements
of the fixed-point and Newton functions. Most important, the FPN
homotopy does not have multiple starting points and the path is
not connected at opposite infinities.
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