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a b s t r a c t

A polynomial approximation method for calculating state profiles for plug-flow reactors is extended to
one-dimensional reactor models that include axial dispersion. The method is based on the conservation
of reactor state profile moments along the spatial dimension. The moments are then transformed analyt-
ically into a polynomial approximation at each timestep. The boundary conditions of the parabolic partial
differential equation are given special attention. It is shown that the Danckwerts boundary conditions
are an appropriate set of boundary conditions for flow problems with axial dispersion in closed-closed
geometries. A significant feature of the present method is that boundary conditions of the partial dif-
ferential equation model to be solved are implicitly satisfied via the moment transformation, while the
polynomial profile in the numerical approximation does not have to satisfy the boundary conditions
exactly. The method is tested in two cases: startup of a tubular reactor and fixed-bed adsorber involving
axial dispersion.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Alopaeus, Laavi, and Aittamaa (2008) presented a solution
method based on the conservation of moments for dynamic plug-
flow reactor models. This paper describes a generalization of the
moment method for models involving axial dispersion. An impor-
tant application of these models are chemical reactor models, and
the mathematical model for axially dispersed reactors is featured
in all well-known chemical reaction engineering textbooks, for
example Fogler (1999). Axial dispersion is usually accounted for
by adding a 2nd order, diffusion-type term to the model equations
describing temporal and spatial variations of the concentration
of a property or the temperature. Due to the 2nd order term,
the type of the partial differential equation changes from hyper-
bolic to parabolic, and the specification of boundary conditions
must be given special attention. The general mathematical expres-
sion for convection and diffusion with a source term is not only
applicable in chemical engineering, but also in environmental and
biological modeling, for example pollutant transport in river beds
(Pimpunchat, Sweatman, Wake, Triampo, & Parshotam, 2009) or
transport in underground reservoirs (Golz, 2003).

The method presented in this paper may be used as an alterna-
tive to the commonly used collocation and finite difference/finite
volume methods or when an analytical solution is not available.
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Even when analytical solutions exist, they are usually limited to
linear source terms, and their evaluation can be tedious (Liao &
Shiau, 2000; Li, 2008; Zheng & Gu, 1996). However, analytical solu-
tions still serve an important role as reference solutions for the
verification of numerical methods such as the one presented in this
paper.

The moment method belongs to the class of weighted
residual methods (WRMs), together with the orthogonal collo-
cation/orthogonal collocation on finite elements (OCFEs) and the
Galerkin methods (Finlayson, 1972; Villadsen & Michelsen, 1978).
In the moment method, the state profiles within an element are
approximated by polynomials of desired degree (although there are
some numerical limitations to the degree of the polynomials, see
below). A moment transformation is carried out for the profiles that
result in a linear expression between the moments and the polyno-
mial coefficients: [A](w) = (m). The polynomial coefficients at any
given time can be calculated by simple matrix inversion. In theory
and application the moment method is very similar to the Galerkin
method, since both methods aim to make the trial function orthog-
onal to a complete set of functions. The Galerkin method forms the
basis for the finite element and the moving finite element meth-
ods (MFEMs) (Carmo Coimbra, Sereno, & Rodrigues, 2001; Sereno,
Rodrigues, & Villadsen, 1991; Sereno, Rodrigues, & Villadsen, 1992).
In the Galerkin method, usually linear or quadratic trial functions
are used, but in principle polynomials of any degree are possible
(Sereno et al., 1991).

The idea behind the moment method is that the state pro-
files are approximated with polynomials that do not have to meet
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Nomenclature

[A] linear operator between polynomial coefficients
and distribution moments

b parameter in the packed-bed adsorber case
(b)T row vector that transforms the moments into the

convective-dispersive part of the integral in Eq. (7)
[BC] transformation matrix between the moments and

the numerical boundary conditions
c concentration (mol m−3)
C dimensionless concentration
C* modified dimensionless concentration in the

packed-bed adsorber case
Cp heat capacity (J kg−1 K−1)
Da Damköhler number
G result of numerical integration (quadrature)
(Inlet) vector containing inlet boundary condition in 1st

element, zero elsewhere
j jth moment
[Jj] diagonal matrix with elements (1.7)
k reaction rate constant (m3 mol−1 s−1, m6 mol−2 s−1)
Kd packed-bed adsorber parameter
[Ki] diagonal matrix with elements (1.10)
L reactor length (m)
m moment of a distribution
[N] matrix with N1,1 = 1, identically zero elsewhere
NE number of elements
NVAR number of variables
NQ number of quadrature points
Pe Péclet number
R numerical boundary value
Rd Retardation factor
S general source term, dimensional in Eq. (1), other-

wise dimensionless
(S) vector of source terms at the quadrature points
t time (s)
T temperature (K)
u velocity (m s−1)
w polynomial coefficient
(w)T vector of quadrature weights
z axial coordinate (m)
(zc) vector of quadrature points
[Z] transformation matrix between polynomial coeffi-

cients and polynomial values at quadrature points
[Zout] transformation matrix between polynomial coef-

ficients and polynomial values at the outflow
boundary

[Zd] transformation matrix between polynomial coeffi-
cients and polynomial derivative values at quadra-
ture points

[Zout
d

] transformation matrix between polynomial coef-
ficients and polynomial derivative values at the
outflow boundary

[Zin
d

] transformation matrix between polynomial coef-
ficients and polynomial derivative values at the
inflow boundary

[*] matrix
(*) column matrix

Greek symbols
˛ order of reaction
ˇ parameter in the packed-bed adsorber case
ı Kronecker delta
� dimensionless time

�* modified dimensionless time in the packed-bed
adsorber case

� density (kg m−3)
� dimensionless axial coordinate
� concentration of a property (usually kg m−3,

mol m−3, J m−3)
 dimensionless concentration of a property
� dimensionless axial coordinate

Subscripts and superscripts
0 initial value, boundary value
e index of element
i ith element
init initial condition of the adsorber in the adsorber case
j jth moment
L with respect to overall reactor length
ref reference value
ˆ value calculated from polynomial

the boundary conditions exactly; it suffices that the boundary
conditions are met approximately (Alopaeus et al., 2008) (in the
Galerkin method, this holds for boundary conditions that involve
1st derivatives, Finlayson, 1980). This feature distinguishes the
moment method from other common polynomial approximation
methods, especially the orthogonal collocation methods. The way
of specifying the boundary conditions in the moment method is to
some extent similar to the Galerkin method, but in the moment
method boundary conditions are specified at all element bound-
aries, whereas in the Galerkin method boundary conditions are
only needed at the domain boundaries. This may be a disadvan-
tage when strict continuity of the profiles is required, but has also
advantages when the profiles have discontinuities due to physical
reasons, e.g. in distillation columns at the feed location (Roininen
& Alopaeus, 2010).

Actually, the boundary conditions in the moment method can be
regarded as the flux through the boundary as in the finite volume
method, rather than a continuity condition, as in the orthogonal col-
location method. When the approximating polynomials are chosen
as 0th degree polynomials, the moment method is reduced to the
finite volume method with 1st order upwind discretization.

When comparing the computational time, the OCFE method
is usually the fastest since it requires the least amount of opera-
tions at a time step. The moment and Galerkin methods require
approximately the same amount of operations, since in both meth-
ods nonlinear integrals (quadrature) need to be evaluated. The
drawback of the OCFE method is, however, that the boundary con-
ditions at the endpoints and the element boundaries appear as
algebraic equations that have to be satisfied during time integration
(Finlayson, 1980).

An important question that arises in conjunction with axial dis-
persion models is that of the appropriate boundary conditions. The
Danckwerts boundary conditions for flow systems with axial dis-
persion and reaction, named after a famous paper by Danckwerts
(1953), have been scrutinized for now more than a half of a century.
Although the Danckwerts boundary conditions are widely estab-
lished, they are still questioned by many researchers. A number of
papers dealing with the issue have been published since the original
paper appeared (e.g. Bischoff, 1961; Deckwer & Mählmann, 1976;
Golz & Dorroh, 2001; Golz, 2003; Lee, Wang, & Newell, 1998; Salmi
& Romanainen, 1995; Wehner & Wilhelm, 1956). Parulekar and
Ramkrishna (1984a,b,c) analyzed systematically different types of
open and closed boundary conditions in transient systems with
appended semi-infinite fore and aft sections to the reactor using
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