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This paper specifies and estimates state-level models of short- and long-term electricity demand in the
United States. The short-term model predicts hourly load based on weather and calendar inputs. The
long-term model estimates interannual demand, and includes population, prices, and gross state product
as predictors. These models are combined to incorporate the short- and long-term trends in electricity
consumption when generating forecasts of diurnal patterns into the future. Finally, the authors inves-

tigate the effects of short-run price elasticities of demand. The short-term model is shown to be within
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95% accuracy of actual levels in out-of-sample tests.
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1. Introduction

The demand for electricity fluctuates on familiar cycles and with
known influences in the short-term, and its long-term growth
coincides with trends in macroeconomic indicators. Accurately
forecasting the level of demand on disparate time scales is neces-
sary for utilities to schedule generators, plan system maintenance,
and devise long-term investments. Short-term forecasts are
commonly made in half- or 1-h intervals 24—168 h in advance of
the pertinent period. Seasonal patterns such as day of week and
month of year, as well as temperature and humidity, are the most
significant factors influencing demand within a year. Both types
of factors work in conjunction with each other—although on
a day-to-day basis the specific day of the week is of great impor-
tance, temperature also matters. Monthly seasonality primarily
reflects meteorological conditions. These variables become less
significant with longer time horizons; models of long-run elec-
tricity demand typically forecast aggregate monthly or annual
levels. Changes in long-run demand are normally correlated with
changes in economic indicators such as gross domestic product and
prices of electricity and other fuels.
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In the short-term, regression techniques are common for
modeling the quantity of electricity demanded. Pardo et al. [1] use
autoregressive least-squares regression to explore the effects of
temperature and seasonality on daily load. For modeling the daily
peak and monthly aggregate demand levels, Mirasgedis et al. [2]
also use regressions which include seasonal and temperature
variables. Both of these papers are primarily concerned with the
role of weather in demand quantity fluctuations. The peak load,
average load, temperature, and calendar particulars of the previous
day are the basis for the bivariate model of next-day hourly peak in
the work of Engle et al. [3]. Forecasts for diurnal load profiles can be
made in a comparable manner; Ramanathan et al. [4] build 24
separate regression models, one for each hour of the day with
unique regressors. A similar approach is used by Taylor and Buizza
[5] to forecast load at various cardinal points of the day, including
midday and midnight.

Similar methods are applied to long-term forecasts as well. For
example, Mohamed and Bodger [6], Amarawickrama and Hunt [7]
and Bianco et al. [8] use annual demand regression models that
consider macroeconomic factors, such as gross domestic product
and population. Efforts to combine monthly and annual aggregate
forecasts from the same data set through cointegration of time
series can be found in the work of Engle et al. [9]. The authors
capture short-term effects in a monthly model, and then improve it
by introducing a factor from a separate annual model influenced
more by long-term trends. Artificial neural networks are another
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method common in the literature for both time scales. Ringwood
et al. [10] investigate the influences on demand in multiple time
frames by modeling daily, weekly, and yearly quantity demanded
using neural networks. More recently, Taylor et al. [11] develop an
intra-hour neural network and compare it to double exponential
smoothing, regression with principal component analysis, and
seasonal ARMA models for two data sets of diurnal load profiles on
hourly and half-hourly intervals.

A natural extension of predicting the quantity of electricity
demand is investigating how this quantity changes under different
pricing policies. Price elasticities are a measure of how much the
quantity demanded for a good changes given a change in price.
These elasticities can be estimated for changes in the price of the
good itself (own) or a change in the price of a different good (cross).
With respect to electricity load, the different goods can be thought
of as electricity in different hours of the day. An increase (decrease)
in price in an hour may decrease (increase) demand in that hour,
and change the quantity demanded in adjacent hours as well. Prices
can be structured in several ways, for instance a constant time-
invariant price or a time-of-use tariff, with different prices
applied to consumption during different blocks of time. The hourly
own- and cross-price elasticities of demand used in this work are
determined by Taylor et al. [12]. These elasticities are estimated
from eight years of data for industrial customers across all hours of
the day.

Despite the existing body of literature on short- and long-term
forecasting, little work which utilizes multiple time horizons is
available. In the short-run, models frequently only predict peak or
aggregate daily load. We investigate how similar modeling tech-
niques to those found in the literature can be used to predict
continuous demand with one function. Furthermore, by predicting
the entire diurnal load profile with a single regression model,
exploring the interactions in quantity demanded between different
hours is possible. Thus, effects of different pricing strategies can be
captured by utilizing customers’ price elasticities. We explore cases
where there is a simple peak and off-peak structure and where the
price increases with the consumption level. In addition, as a pop-
ulation and economy grow, the amount of electricity demanded in
aggregate can grow as well. We develop a second model of annual
aggregate electricity demand regressed against macroeconomic
variables. Using the long-term growth rates, as determined by this
annual aggregate model, fine-grain predictions further into the
future are possible. Although predictions of peak and aggregate
load as found in the literature are necessary for planning, fore-
casting temporally disaggregated load allows further refinement.

The remainder of this paper is organized as follows. Section 2
details the development of the two models; first, the diurnal
model form and the data used to develop it are considered and then
a similar treatment for the annual regression is undertaken. How
these models are combined to forecast loads in the future is also
discussed. In Section 3, the estimated regression coefficients are
reported along with results from out-of-sample validation of the
proposed short-term model and forecasted results and the appli-
cation of cross- and own-price elasticities. Section 4 concludes and
summarizes the work.

2. Data and methodology
2.1. Diurnal model

Our initial regression model for diurnal load profiles is of a log-
linear form incorporating calendar and weather variables. Elec-
tricity demand has daily, weekly, and monthly cycles which can be
described by Fourier series over the respective period. A Fourier
series is a linear combination of sine and cosine functions of
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Fig. 1. Hourly electricity demand of 78,000 commercial and industrial customers in
the state of Ohio in the year 2010. Data obtained from AEP.

differing frequencies used to approximate a given function arbi-
trarily well. This method is advantageous over the classic approach
of dummy variables to represent the particular hour, day, and
month of an observation. Fewer variables are necessary to repre-
sent each time frame; a model with two frequencies at each time
scale is optimal with our data, for a total of 16 predictors instead of
40. The three cycles modeled with this method are hour of the day
patterns, hour of the week patterns, and month of the year patterns.
The longest of these cycles is evident in Fig. 1, which shows hourly
load in the state of Ohio by a subset of American Electric Power’s
(AEP’s) commercial and industrial customers in the year 2010.
Demand peaks during the summer months, but otherwise is rela-
tively steady on a seasonal basis. This may be in part because
cooling technologies used in the summer tend to be electric, while
heating technologies used in winter months are not. Fig. 2 displays
the first two weeks of hourly demand levels from the same
consumers as in Fig. 1. The weekly and daily cycles are apparent.
Also evident is the difference in demand from weekdays to week-
ends, as the first 48 h are over a holiday weekend, and the next 120
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Fig. 2. Diurnal demand patterns for same subset of commercial and industrial
customers shown in Fig. 1 in the first two weeks of the year. Data obtained from AEP.
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