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a b s t r a c t

A generic industrial plant (or section of plant) can be abstracted as a set of capacities exchanging exten-
sive quantities through connecting streams. This abstraction is applicable with different granularities,
focusing on smaller or bigger control volumes according on how well the dynamics of the process must
be studied. The studied system can be represented as a directed graph, where the capacities are the nodes
and the streams are the arcs. The graph of the plant (or of the single operation unit) is a schematisation
of the process; the model can then be written as a system of differential and algebraic equations to be
solved with a numerical solver. Here we discuss how one can simplify a detailed distillation model. In
the studied detailed distillation model, each distillation stage is a dynamic rate-based flash. A cascade of
simplified models is accomplished by a systematic procedure that combines singular perturbation and
lumping.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling of industrial processes is today the foundation to
almost any operation including design, control, planning and
retrofitting. Modelling, model simplification and model reduction
are well established areas in process system engineering, and also in
control theory. Simplified and reduced models are used both to gain
insight into model sub-processes and to ease the computational
efforts of simulation and analysis (Taylor, Doyle, & Petzold, 2008).
Several model reduction and simplification methods have been
developed in the past (Benallou, Seborg, & Mellichamp, 1986; Cho &
Joseph, 1983; Khowinij, Henson, Belanger, & Megan, 2005; Kienle,
2000; Kumar & Daoutidis, 2003; Marquardt, 1990, 2001). Among
the most popular model simplification techniques, we quote: lump-
ing together similar state variables (Preisig & Westerweele, 2003),
projecting a stiff system onto its slow manifold (Maas & Pope,
1992), eliminating states insensitive to parametric perturbation
(Turanyi, 1990), and singular and regular perturbation (Robertson
& Cameron, 1997).

For a given system or operation, there exist different approaches
to develop a dynamic model and its model simplifications; one of
these is to use graph theory. Graph theory is an old technique;

� Extended paper of “Graph theory and model simplification. Case study: distilla-
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the first paper about graph theory was published in the 18th cen-
tury by Leonhard Euler. Despite the old age, graph theory still
finds many applications in different disciplines in present prob-
lems (Henley & Seader, 1973; Roberts, 1976). In process system
engineering, graph theory is used to describe combinatorial and
structural aspects of systems (Hangos & Cameron, 2001; Hangos &
Tuza, 1999; Jungnickel, 1999; Reinschke, 1988).

Hangos, Szederkényi, and Tuza (2004) propose to study
a lumped dynamic process model by bipartite graphs, called
equation-variable graphs. In the equation-variable graphs, one
class of vertexes represents the set of the equations of the model,
while another vertex class contains the modelled variables. This
kind of graph is used for analysing the effects of model simplifica-
tion on the model structure.

In another paper, Hangos and co-workers (Leitold, Hangos, &
Tuza, 2002) define the variable structure graph of a dynamic sys-
tem. This type of graph is a directed graph, where the nodes of
the graph are the model’s variables (state variables, input vari-
ables and output variables), and the directed paths can be used to
describe the effect of a variable to the other variables. The variable
structure graph finds even earlier applications with Wang’s and
Cameron’s cause-and-effect graphic methods (Wang & Cameron,
1993). In their paper, Wang and Cameron define the cause-and-
effect graphs, quoting previous references such as Lin (1974) and
Johnston (1990). As the cause-and-effect graph, Lai’s and Yu’s qual-
itative model based on signed directed graph (Lai & Yu, 1995) can
be considered a reference for the variable structure graph.

The variable structure graph (or simply, the system structure
graph) is used to study two common steps of simplifying dynamic
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Nomenclature

t time
x primary states
y secondary states
z transformed primary states
â stream of extensive quantity a
ȧ time derivative of quantity a
n mass
U internal energy
n̂a|b mass stream flowing from node a to node b
q̂a|b heat stream flowing from node a to node b

Ĥa|b enthalpy stream flowing from node a to node b
ŵa|b volumetric work from node a to node b
A Helmholtz energy
T temperature
V volume
S entropy
p pressure
� chemical potentials

Subscripts
L liquid phase
G gas phase
B boundary between liquid phase and gas phase

process models, namely the (steady-state) variable removal and the
variable lumping simplification (Leitold et al., 2002). These steps are
used to simplify those models which display multiple time-scale
behaviour. Here, the main operation used to simplify the models is
singular perturbation (Martinez & Drozdowicz, 1989; Robertson &
Cameron, 1997).

In this context, we propose a model simplification procedure
based on graph theory. The starting point is to consider a generic
system (e.g. a plant or section of plant) as a set of capacities exchang-
ing extensive quantities through connecting streams (Fig. 1). The
studied system is modelled with a network approach (Preisig &
Westerweele, 2003). Each node of the graph represents a control
volume (capacity) connected to the others and to the external of the
modelled system by arcs. These arcs are the connecting streams of
extensive quantities (Mangold, Motz, & Gilles, 2002; Preisig, 2009b;
Westerweele, 2003).

This kind of abstraction is applicable with different levels of
detail, focusing on smaller or bigger control volumes according

Fig. 1. Graph theory to model industrial plants. The control volumes are uni-
form lumps (nodes) exchanging extensive quantities (arcs). Picture: StatoilHydro’s
Mongstad refinery (Norway).

on how well the dynamics of the process must be described
(Hildebrandt, Raden, Petzold, Robinson, & Doyle, 2008).

A compact network model of the studied system is as follows:

ẋ = Fx̂ (1)

Eq. (1) presents a non-reacting system. x is a stack of vectors of
primary states (capacities) of the conserved extensive quantities of
the plant (mass, energy and momentum). In (1), the variation in
time of the holdups is obtained by summing the streams entering
the desired node and subtracting the streams leaving that node. The
matrix F is the stream direction matrix, an incidence matrix made
of zeroes, plus and minus ones. The purpose of matrix F is to map
the flows x̂ (mass, energy and momentum streams) and link them
to each balance.

Eq. (1) builds the conservation balances for mass, energy and
momentum. The arcs of the graph (x̂) are defined in (2) as func-
tion of x and of the related secondary states y, namely chemical
potentials, temperatures and pressures.

x̂ = g(x, y, t) (2)

The intensive variables y are calculated through transformations
of the fundamental state variables x defined in the conservation
equation.

0 = h(x, y, t) (3)

Eq. (3) defines the state variable transformations. It also contains
those variable transformations depending on the thermodynamics
and the state equations (Løvfall, 2008).

A formally correct formulation of the plant model is a sys-
tem of differential and algebraic equations (DAE problem). The
dynamic behaviour is studied integrating in time the resulting sys-
tem (4) (Aascher & Petzold, 1998; Brenan, Campbell, & Petzold,
1996; Buzzi-Ferraris & Manca, 1998; Gear, Leimkuhler, & Gupta,
1985; Manca & Buzzi-Ferraris, 2007).⎧⎪⎨
⎪⎩

ẋ = Fx̂

x̂ = g(x, y, t)

0 = h(x, y, t)

(4)

Defining

Fx̂ = Fg(x, y, t) = f(x, y, t) (5)

the system in (4) is in the form of a Hessenberg index-1 problem
(Campbell & Petzold, 1983; Petzold, 1989; Petzold, 1992):{

ẋ = f(x, y, t)

0 = h(x, y, t)
(6)

In (6), there are explicit differential equations in x plus algebraic
equations (implicit, in the most generic case) clearly separated by
the differential equations.

Given a plant/system, a multitude of models may be required,
for different purposes or even for the same operation.

The issues related to the modelling task are the difficulty and the
time required to generate different models for the same system, and
the risks associated to correctly update all of them.

A systematic way to obtain different models with different
assumptions is to start with a master model and then to derive
a cascade of more simplified models using a simple and precise
procedure, which does not leave any room for human error.

Our aim here is to formalise a set of model simplification tech-
niques applicable to mechanistic models. The techniques being
discussed here are associated with order-of-magnitude assump-
tions, singular perturbation and lumping (combination of variable
transformation and singular perturbation).
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