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a b s t r a c t

The breakage equation is of great significance for modeling many physicochemical processes. The need for
its extension to more than one internal coordinates in spatially distributed environment renders crucial
the development of efficient numerical methods for its solution. In the present work two new sectional
methods (Cell Average Technique and Extended Cell Average Technique) recently applied to the coagula-
tion equation are implemented to breakage equation and tested extensively against the well-established
Fixed Pivot Technique. The results of the analysis show that whereas the new methods cannot predict
the complete particle size distribution better than the Fixed Pivot Technique (despite their superiority in
the case of coagulation), they are very successful in predicting the moments of the distribution even for
coarse grids. Thus, especially the Extended Cell Average Technique can be considered as a refinement of
the moments method with increased number of degrees of freedom but also increased accuracy.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Breakage (alternatively called fragmentation) is of paramount
importance in several processes of technological and/or fundamen-
tal scientific interest. This phenomenon alone or in combination
with other particle-level phenomena such as coagulation, growth-
dissolution, particle size domain diffusion, etc., concerns several
scientific disciplines. For example, regarding polymer technology,
the mechanism of polymer degradation can be considered to be
breakage (Staggs, 2004, 2006) whereas regarding catalytic pro-
cesses it influences their efficiency through the catalyst attrition
(Matsuda, Hatano, Muramoto, & Tsutsumi, 2004). In atmospheric
sciences, it is related to rain formation (Shrivastava, 1982) and in
astrophysics to the size distribution of asteroids (Piotrowsky, 1953).
In biotechnology, the cell division process can be described as a
spontaneous breakage process (Nielsen & Villadsen, 1994). Other
processes where breakage is the essential mechanism are those
related to size reduction of solids (e.g. crushing, milling, grinding)
(Kelley & Spottiswood, 1982). Recently, it has been argued that the
size distribution of the ice crystals in the Greenland ice sheet is the
result of a breakage process (Olesen, Ferkinghoff-Borg, Jensen, &
Mathiesen, 2005). The bubble size distribution in bubble columns
is largely due to breakage, which in turn determines the character-
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istics of the flow field in the column (Jakobsen, Lindborg, & Dorao,
2005). Furthermore, breakage is very important in emulsion tech-
nology determining not only the droplet size distribution but in
some cases even the phase inversion point (Hu, Matar, Hewit, &
Angeli, 2006).

The dynamics of a particle population undergoing breakage
is described by the breakage equation that belongs to the more
general class of the population balance equations. The breakage
equation is a linear partial integro-differential equation and its
numerical solution requires special techniques. This is the primary
reason for the development of several methods for its solution,
obtained from various scientific disciplines. It is quite impressive
that after 35 years of development of numerical techniques for
the solution of population balance there is still room for the emer-
gence of fresh ideas; e.g. the extension and application to cases of
practical interest (Qamar & Warnecke, 2007a,b) of the completely
new discretization approach introduced by Filbert and Laurencot
(2004).

There are three general approaches to the numerical solution
of the coagulation equation, in addition to the conventional finite
differences-finite element-finite volume techniques. The so-called
higher order methods are based on approximating the unknown par-
ticle size distribution (PSD) by sets of orthogonal functions (globally
or locally) or spline polynomials. For example, cubic splines have
been used for the solution of breakage equation by Eyre, Everson,
and Campbell (1998). Liu and Tade (2004) proposed the expansion
of the solution in terms of wavelets. Mantzaris (2005) employed
local approximation with Legendre polynomials and Hamilton,
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Curtis, and Ramkrishna (2003) used global approximation by Her-
mitte polynomials. Canu (2005) attempted an expansion to a set of
global non-orthogonal functions.

The second approach is the so-called method of moments. In
this case the coagulation equation is transformed to a system of
equations for some moments of the PSD. The closure problem is
overcome by using relations between the moments of the PSD.
The main advantage of the method is its computational efficiency
as it has only a few degrees of freedom. On the other hand, the
method has achieved some degree of success on the prediction of
the moments of the PSD but its capability to predict the complete
PSD is at best small. A rather extensive account of the application of
the moments method to solve the breakage equation can be found
in Kostoglou and Karabelas (2002, 2004).

The third approach is the so-called sectional methods (alterna-
tively zero order methods or methods of classes). These methods
offer a very attractive compromise between the very efficient but
of limited accuracy moments methods and the very accurate but
computationally demanding higher order methods. Of course the
notion of computational efficiency is not crucial for the zero exter-
nal and one internal coordinate problem examined here but it
becomes important as the number of internal and external coor-
dinates increases to simulate processes of practical interest (Livk &
Illievski, 2007). Until today the state of the art sectional technique
for the breakage equation is the so called Fixed Pivot Technique
(Kumar & Ramkrishna, 1996a). Recently some new sectional tech-
niques (Kostoglou, 2007; Kumar, Peglow, Warneke, Heinrich, &
Morl, 2006) were developed to improve the Fixed Pivot Tech-
nique performance for the coagulation equation. The purpose of
the present work is to examine whether similar principles can be
employed for the development of improved sectional techniques
for the breakage equation as well. It is noted that the breakage
problem is in general easier than the coagulation problem due to
its linearity.

The structure of the present work is as follows: in the next
section the breakage problem is formulated and nondimensional-
ized. Then a rigorous mathematical derivation of sectional methods
conserving just one integral property is presented. The implemen-
tation is described next of the Fixed Pivot (Kumar & Ramkrishna,
1996a,b), Cell Average (Kumar et al., 2006) and Extended Cell Aver-
age (Kostoglou, 2007) techniques to the breakage equation in order
to overcome the restriction of the single conservation quantity. In
the results section, the three sectional methods are assessed against
the existing exact solutions of the breakage equation (moments or
complete PSD). The outcome of the assessment is extensively dis-
cussed to reveal the advantages and disadvantages of the proposed
techniques.

2. Problem formulation

2.1. The breakage equation

The linear breakage process (described as “continuous break-
age” in physics literature, e.g. Astrom, 2006) can be described in
general by the following linear partial integro-differential equation:

∂f (x, t)
∂t

=
∫ ∞

x

p(x, y)b(y)f (y, t) dy − b(x)f (x, t) (1)

where t time, x particle volume, f(x, t) particle number density
distribution, b(x) breakage frequency and p(x, y) the probability dis-
tribution of particles of volume x resulting from the breakup of a
particle of volume y. The above equation must be solved for the
evolution of the particle size distribution (PSD) having as initial
condition a given PSD f(x, 0) = f0(x). For convenience, the following

nondimensionalization is introduced, employing the initial total
particle concentration, N =

∫ ∞
0

f0(x) dx, and the mean particle vol-

ume of the initial PSD, x0 =
∫ ∞

0
xf0(x) dx/

∫ ∞
0

f0(x) dx:

x̄ = x

x0
, ȳ = y

x0
, t̄ = b(x0)t, f̄ (x, t) = x0f (x, t)

N

b̄(x) = b(x)/b(x0), p̄(x, y) = p(x, y)/x0

Thus, Eq. (1) can be written as

∂f̄ (x̄, t̄)
∂t̄

=
∫ ∞

x

p̄(x̄, ȳ)b̄(ȳ)f̄ (ȳ, t̄) dȳ − b̄(x̄)f̄ (x̄, t̄) (2)

Since only dimensionless variables will be used in the rest of the
present work the overbars are omitted for convenience. In that case
the dimensionless coagulation equation looks exactly the same as
the dimensional one. The dimensionless moments of the PSD are
defined as

Mi =
∫ ∞

0

xif (x, t) dx (3)

Multiplying the breakage Eq. (2) by xi and integrating from x = 0 to
∞ the following system for the moments of the PSD results:

dMi

dt
=

∫ ∞

0

b(y)f (y, t)

[∫ y

0

xip(x, y) dx − yi

]
dy (4)

It is obvious that the parameters of the breakage equation are the
breakage frequency b(x) and the breakage kernel p(x, y). The break-
age frequency should go to a finite value as x goes to 0; instead, the
so called “shattering” phenomenon appears (McGrady & Ziff, 1987).
This phenomenon refers to the existence of a new phase with par-
ticles of zero size but finite mass. Under these conditions Eq. (2)
does not conserve the total particle mass during breakage due to
the mass loss towards the new particle phase. The breakage kernel
should satisfy the mass conservation (total fragments mass equals
to parent particle mass) condition

∫ y

0
xp(x, y) dx = y. The number

of fragment resulting from the breakup of a particle of size y can be
obtained as v(y) =

∫ y

0
p(x, y) dx.

A major classification of the breakage functions is made with
respect to their homogeneity. The breakage frequency is homoge-
neous only if it has a power law form; i.e. b(x) = xb. The breakage
kernel is homogeneous if it has the form p(x, y) = �(x/y)/y. This
means that the normalized (with respect to the parent particle
size) fragment size distribution does not depend on the parent
particle size. For the case of homogeneous breakage kernel, the no-
shattering condition degenerates to the condition b ≥ 0, the main
properties of the breakage kernel given above are transformed to∫ 1

0
z�(z) dz = 1 and v =

∫ 1
0

�(z) dz, respectively, and the moments
equations are simplified as follows (i = 0, 1, 2. . .):

dMi

dt
= (Ji − 1)Mi+b (5)

where Ji are the moments of the homogeneous kernel, i.e. Ji =∫ 1
0

zi�(z) dz.

2.2. Sectional methods for the breakage equation

A typical discretization scheme transforms the breakage equa-
tion to a system of ordinary differential equations of the form:

dNi

dt
=

∞∑
j=i

nijbjNj − biNi (6)
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