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a b s t r a c t

Compartmental and aggregated modeling is used to derive low-order (reduced) dynamic models from
detailed models of staged processes. In this study, the aggregated modeling method of [Lévine, J., & Rou-
chon, P. (1991). Quality control of binary distillation columns via nonlinear aggregated models. Automatica,
27, 463] is revised with the objective of deriving computationally efficient models for real-time control
and optimization applications. A simple implementation of the original method not requiring the spec-
ification of compartments is presented. The resulting DAE models are converted into ODE models by
pre-solving and substituting the algebraic equations resulting from the reduction procedure, which is the
key step to increase simulation speed. To study this, the performances of several full and reduced distilla-
tion models, with and without base-layer controllers, are compared using different numerical integrators.
It is found that while the reduced DAE models are computationally not advantageous, the reduced ODE
models decrease the simulation time by a factor of 5–10.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the establishment of dynamic real-time optimization and
model predictive control as state-of-the-art methods to efficiently
operate industrial processes, reduced models with low computa-
tional complexity are in the focus of current research (Allgöwer
& Zheng, 2000; Marquardt, 2001; van den Berg, 2005). In par-
ticular, reduced nonlinear physically based models are of high
interest for the prediction of the system behavior over a wide
range of operating conditions. Many model reduction techniques
have been developed for nonlinear systems (Marquardt, 2001;
van den Berg, 2005), most of which produce models of lower
order. This, however, does not guarantee that the reduced mod-
els show a computationally better performance than the original
models they were derived from (van den Berg, 2005). This is
because a reduced model is most likely less accurate than the
original full model, and because the numerical complexity of
the full model is often retained in the equations of the reduced
model.

For nonlinear model reduction of distillation columns, several
model reduction and simplification methods have been developed
in the past (Benallou, Seborg, & Mellichamp, 1986; Cho & Joseph,
1983; Khowinij, Bian, Henson, Belanger, & Megan, 2004; Khowinij,
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Henson, Belanger, & Megan, 2005; Kienle, 2000; Kumar & Daoutidis,
2003; Lévine & Rouchon, 1991; Marquardt, 1990; Skogestad, 1997).
Among these are the method of compartmental modeling (Benallou
et al., 1986) and later the improved variant of aggregated mod-
eling by Lévine and Rouchon (1991). The latter method is used
for deriving the reduced models investigated in this study. It is
based on partitioning a distillation column into “compartments”
consisting of “steady-state” trays and dynamic “aggregation” trays,
and using a singular perturbation argument (Kokotovic, Khalil, &
O’Reilly, 1986) to derive a reduced-order model. Among its advan-
tages is the perfect steady-state agreement with the original model,
a simple derivation, and good control of the reduced model com-
plexity.

Originally, these methods were intended for nonlinear con-
troller design, for which a low-order model is necessary. More
recently, they have been used to reduce the simulation time in
real-time applications (Bian, Khowinij, Henson, Belanger, & Megan,
2005; Khowinij et al., 2004, 2005). However, it is shown in this study
that while only transforming the original system into a reduced sys-
tem in differential-algebraic equation (DAE) form does not improve
the simulation speed of the reduced model, a subsequent elimina-
tion of the algebraic equations is necessary to obtain a reduced
model in ordinary differential equation (ODE) form, which shows
a significantly improved computational performance compared to
the original model. On a more fundamental level, it is shown that
the notion of compartments is not necessary in the derivation of the
reduction method. This greatly simplifies the derivation and makes

0098-1354/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2008.09.014

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:skoge@ntnu.no
dx.doi.org/10.1016/j.compchemeng.2008.09.014


A. Linhart, S. Skogestad / Computers and Chemical Engineering 33 (2009) 296–308 297

the extension of the method to more complex systems straightfor-
ward.

The paper is organized as follows: In Section 2, the full model for
a binary distillation column, and the derivation of reduced models
from this using aggregated modeling is described. Important imple-
mentation details and properties of the models are given. In Section
3, the framework for testing the computational performance of the
models is explained, discussing the input signal, the model param-
eters and the numerical solvers used for simulating the models. The
results of the simulations are given in Section 4. Section 5 discusses
the results of the simulations, and details and possible extensions
of the reduction method. A summary and conclusions are given in
Section 6.

2. Models

2.1. System and modeling assumptions

The system investigated is a binary distillation column with 72
trays plus reboiler and condenser. Two variants of this system are
studied:

1. An “uncontrolled” column with level controllers for condenser
and reboiler, but with no temperature or composition control.
The reflux L and the boil-up V remain as degrees of freedom (“LV-
configuration”).

2. A “controlled” column with an additional composition controller
in the lower column part that manipulates the boil-up rate V.

The controlled column is shown schematically in Fig. 1. In the
following, the uncontrolled system is used to explain the system
equations and the reduction procedure. Later, in Section 2.4, the
inclusion of the composition controller is explained.

All assumptions made in this simplified distillation model are
discussed in detail by Skogestad (1997). The major modeling
assumptions are: Ideal trays, which means that liquid and vapor
are in equilibrium at each tray; ideal mixture, which means that
the vapor composition y can be expressed as a function of the liquid
composition x assuming the constant relative volatility

y = k(x) = ˛x

1 + (˛ − 1)x
, (1)

where ˛ is the relative volatility; constant molar flows, which
means that the energy balance is simplified; constant molar holdup
on each tray and negligible mass in the vapor phase.

The assumption of constant molar flows may not be good if the
model is to be used for control purposes (Skogestad, 1997), but the
focus here is on longer time scales.

The column has one feed flow F at tray number nF . zF denotes
the concentration of the first (light) component in the feed. A liq-
uid flow L (or L + F for trays below the feed tray) and a vapor
flow V enter and leave each tray. The condenser and reboiler
levels are assumed to be controlled using the distillate flow D
and bottom flow B, respectively. For simplicity, perfect level con-
trol is assumed, such that D = V − L and B = L + F − V . Note that
the assumption of perfect level control is not important with
the LV-configuration. The concentrations in these flows deter-
mine the purity of the distillation products and are therefore the
most important output variables in the process. The feed flow
rate F and the feed concentration zF can be seen as disturbance
variables, and the flows L and V are manipulated variables for
control.

2.2. Full uncontrolled model

The full model consists of one component material balance for
each tray and the condenser and reboiler. For ease of notation, the
condenser and reboiler are written as tray 1 and N:

H1ẋ1 = Vy2 − Vx1, (2)

Hiẋi = Lxi−1 + Vyi+1 − Lxi − Vyi, i = 2, . . . , nF − 1 (3)

HnF ẋnF = Lxi−1 + Vyi+1 − (L + F)xi − Vyi + FzF , (4)

Hiẋi = (L + F)xi−1 + Vyi+1 − (L + F)xi − Vyi,

i = nF + 1, . . . , N − 1 (5)

HNẋN = (L + F)xN−1 − (L + F − V)xN − VyN, (6)

where Hi is the total liquid molar holdup, xi and yi = k(xi) are the
concentrations of the first component in the liquid and vapor phase,
respectively, of tray i, N is the number of trays including the con-
denser and reboiler, nF is the index of the feed tray, and V, L, F, zF

are as described above.

Fig. 1. Schematic diagram of a binary distillation column with a composition con-
troller in the lower column section.
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