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a b s t r a c t

During system development, large-scale, complex energy systems require multi-disciplinary efforts to
achieve system quality, cost, and performance goals. As systems become larger and more complex, the
number of possible system configurations and technologies, which meet the designer’s objectives
optimally, increases greatly. In addition, both transient and environmental effects may need to be taken
into account. Thus, the difficulty of developing the system via the formulation of a single optimization
problem in which the optimal synthesis/design and operation/control of the system are achieved
simultaneously is great and rather problematic. This difficulty is further heightened with the introduc-
tion of uncertainty analysis, which transforms the problem from a purely deterministic one into
a probabilistic one. Uncertainties, system complexity and nonlinearity, and large numbers of decision
variables quickly render the single optimization problem unsolvable by conventional, single-level,
optimization strategies.

To address these difficulties, the strategy adopted here combines a dynamic physical decomposition
technique for large-scale optimization with a response sensitivity analysis method for quantifying system
response uncertainties to given uncertainty sources. The feasibility of such a hybrid approach is estab-
lished by applying it to the synthesis/design and operation/control of a 5 kW proton exchange membrane
(PEM) fuel cell system.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the complexities in structure and operation involved, the
process of system synthesis/design and operation/control for large-
scale energy system development requires a multi-disciplinary
approach to achieve the quality, cost, and performance goals for the
system. In general the typical approach to this process is to use
simple trade-off analysis, rule-of-thumb, and both design and off-
design simulations. Such an approach may not correctly predict the
best interactions between subsystems, the impact of transient
system/subsystem/component behavior during dynamic operation
(e.g., the start-up and shutdown stages, or rapid load changes), the
optimum system configuration and component designs, the
optimum operating strategies, etc. Moreover, although controller
design should be conducted during the system integration stage as
a part of the system synthesis/design process, it is typically left as
a secondary task to be completed after the system synthesis/design
task has been completed.

Integration of all of these design issues (i.e., dynamic synthesis/
design and operation/control) into a single optimization problem,
which is solved simultaneously, is extremely difficult because of the
complexities involved. This difficulty is further heightened once
uncertainty analysis is incorporated into the problem. Even though
optimization under uncertainty has been widely used for decision-
making procedures in work done on product management and
scheduling, it is difficult to apply to the large-scale system opti-
mizations envisioned here because probabilistic approaches are
very computationally expensive. Only a few cases have been
reported in the literature and these have been limited to steady-
state energy system synthesis/design [1,2] despite the fact that
uncertainty analysis can significantly improve the quality of the
analysis results. The stochastic programming needed for the
uncertainty analysis transforms a deterministic problem into
a probabilistic one, increasing system complexity and nonlinearity
and rapidly rendering the single optimization problem unsolvable
through typical single-level optimization strategies. To overcome
this difficulty sophisticated multi-level optimization strategies (i.e.,
decomposition strategies) to facilitate the optimization process can
be used [3e8]. In particular, decomposition approaches are very
efficient for the optimization of dynamic systems that have highly
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nonlinear characteristics with a great number of degrees of
freedom. In this study, the dynamic synthesis/design and opera-
tion/control optimization strategy used is one based on physical
decomposition only.

As to the many different uncertainty sources in the optimization
problem, these include computational errors, load profile vari-
ability, cost information, thermodynamic properties, correlation
equations, etc. Among these sources, the uncertainties in load
profile and cost information significantly affect the system
synthesis/design and operation/control optimization results. Thus,
it is very important to quantify the uncertainties during system
development. To quantify these uncertainties in the optimization
problem, the response sensitivity analysis (RSA) method [9] is
adopted and developed for our application. The load profile, cost
models, and fuel cost are treated as probabilistic input variables and
uncertainties in the output results are quantified. Fig. 1 schemati-
cally presents how these uncertainties and all of the other issues
listed above are integrated here into one complete optimization
process which simultaneously determines the dynamic system
synthesis/design and operation/control optimization of a system
and its components. The feasibility of such a hybrid approach is
established by applying it to the synthesis/design and operation/
control of a 5-kW PEMFC system and results are presented below.
The focus of the present paper differs from previous papers by the
authors [10,11] in that it illustrates how the multi-level optimiza-
tion technique can be integrated with the uncertainty analysis
process and be successfully applied to the development of an entire
energy system.

2. Optimization

At the beginning stage of a system synthesis/design and oper-
ation/control optimization process, three things must be decided
with regard to the optimization. The first is deciding what kind of
optimization algorithm (e.g., gradient-based, nongradient-based,
or hybrid) is to be employed. The second is deciding between either
a single or multi-objective approach, while the third requires
deciding between a single-level or a multi-level optimization
strategy. In this work, Sequential Approximate Optimization
(SEQOPT), a kind of surrogate-model-based optimization algo-
rithm, is employed, because it is relatively computationally inex-
pensive and effective for solving complex DMINLP problems
[10e12]. SEQOPT is a kind of hybrid heuristic/gradient-based
optimization algorithms developed by Audet et al. [12] at Boeing.
Readers are referred to the reference for more details.

Energy system synthesis/design and operation/control optimi-
zation problems consist of modifying the system configuration,

component designs, and operation and control parameters
according to a single or to multiple objective(s) such as thermo-
dynamic performance, economic, and environmental impact
factors [13]. In particular, multi-objective optimization is quite
useful for decision makers but has not been applied widely to
energy system optimizations because it is computationally expen-
sive. The present authors have developed an effective strategy for
multi-objective optimization problems, which appears in Kim et al.
[10]. However, in the present paper, the optimization problems are
treated as single-objective problems, focusing instead on the
development of a multi-level optimization strategy for dynamic
energy system development under uncertainty.

2.1. General concept of decomposition techniques

If a system optimization problem is uncomplicated enough to be
solved using any of the typical optimization algorithms mentioned
above, a single-level optimization approach is directly applicable.
However, many energy system optimization problems are not that
simple but can, nonetheless, be handled by sophisticated multi-
level optimization strategies, which facilitate the optimization
process. Decomposition breaks the large-scale optimization
problem down into a set of approximately equivalent smaller
optimization problems in order to facilitate the optimization
procedure. Decomposition approaches are very effective for facili-
tating the optimization of dynamic systems which have highly
nonlinear characteristics with a large number of degrees of
freedom. Decompositions in the multi-level approach can be ach-
ieved in four ways: by disciplinary, conceptual, physical, and time
decomposition.

Fig. 1 shows a schematic of the general single- and multi-level
optimization process. Conceptually, the decomposition process is
placed in between the deterministic model and the optimizer as
shown in the figure. Examples of the application of such decom-
position strategies to large-scale energy system synthesis/design
and operation/control optimization problems can be found in
[3,7,14].

2.2. Physical decomposition techniques for large-scale energy
system optimization problems

Various physical decomposition techniques have been intro-
duced in the literature and, in general, can be classified as methods
of either local-global optimization (LGO) or iterative local-global
optimization (ILGO). A dynamic version of the latter also exists
designated as DILGO. Both ILGO and DILGO have been developed
and their efficiencies validated in energy system synthesis/design
and operation/control optimization applied to high performance
aircraft and SOFC/PEMFC systems by [15,16].

The LGO technique has the advantage of breaking a large-scale
optimization problem down into smaller unit-level problems.
However, it is computationally expensive because each unit-level
optimizationmust be carried out independentlymany timeswithin
the system-level (or global) optimization problem resulting in a set
of nested optimizations. The nesting of optimizations in the LGO
approach can be eliminated by recognizing that the system-level
information of optimizing the system-level objective with respect
to the coupling functions can be embedded directly into the unit-
level objectives. Munoz and von Spakovsky [15] recognized this in
developing their iterative local-global optimization (ILGO)
approach which embeds this information at the local level in the
form of gradient (i.e., shadow price) information of subsystem
responses to variations in the coupling functions, which represent
subsystem-to-subsystem interactions associated with strictly
system-level optimization degrees of freedom.

Fig. 1. Schematic of general modeling and optimization under uncertainty [7].
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