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a b s t r a c t

Novel multi-objective optimisation methodologies, including a two-step sequential optimisation
approach and multi-objective optimisation approaches using non-dominated sorting genetic algorithms
(NSGAs) and MATLAB based linear programming integrated with genetic algorithms have been developed
for the first time to engineer the cellular metabolic productivity and process performance simultane-
ously. The simultaneous optimisation of cellular metabolic productivity and thermodynamic performance
deduces a unique set of enzyme catalysed pathways and flux distributions for a given metabolic prod-
uct of importance. It has been demonstrated that the energy generating pathways associated to drive a
desired productivity are prioritised effectively by multi-objective optimisation approach. A case study on
the pentose phosphate pathway (PPP) and glycolysis of in silico Escherichia coli has been used to illustrate
the effectiveness of the methodologies.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The chemical components in a living cell participate in many
different reactions catalyzed by different sets of enzymes. The
sum of such reactions is referred as a cell’s metabolic system
(Light, 1968). Each metabolic pathway can thus be seen as a
series of enzyme catalyzed reactions, by which a cell can pre-
cisely manoeuvre the chemical transformation of its substrate,
via a sequence of intermediate substances, to produce, ultimately,
biomass and an end product from the pathways (Cohen, 1991). Such
pathways are central to cellular biochemical activities, which chan-
nel substrate metabolites into the production of energy, building
blocks for biosynthesis, energy reserves, eliminating waste prod-
ucts, and for recycling and reducing equivalents (Nolan, Fenley,
& Lee, 2006). The rational decomposition of biochemical net-
works into sub-structures has emerged as a useful approach to
study the design of these complex systems (Yoon, Si, Nolan, &
Lee, 2007). In this light, to quantify intracellular reaction steps
or pathways, and infer the objectives of cellular metabolic sys-
tems, rational optimisation strategies need to be developed for
manipulating cell properties, hence productivity. Moreover, robust
optimisation strategies by considering more than one objective
and decision variables simultaneously can be adopted for directing
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cellular functionalities towards engineered products and sys-
tems.

In recent years, several theoretical approaches have been devel-
oped to assign metabolic priorities through engineered cells,
including structural (topological) pathway analysis (Liao, Hou, &
Chao, 1996; Mavrovouniotis, 1990; Schilling, Letscher, & Palsson,
2000; Schuster, Fell, & Dandekar, 2000; Seo, Lee, Park, Fan, & Shafie,
2001; Simpson, Follstad, & Stephanopoulos, 1999), metabolic
flux analysis (MFA) (Stephanopoulos, Aristidou, & Nielsen, 1998),
metabolic control analysis (Fell, 1996; Heinrich & Rapoport, 1974;
Kacser & Burns, 1973) and dynamic simulation (Tomita et al., 1999).
A representative modelling framework for metabolic analysis is the
flux balance analysis (FBA), which is a constrained optimisation
approach based on linear programming (LP) (Bonarius, Schmid, &
Tramper, 1997; Edwards & Palsson, 1998; Varma & Palsson, 1994).
The basic idea behind these modelling approaches is the predic-
tion of pathways that are related to experimental observation or
to predict productivity. All these approaches are designed to deal
with metabolic systems with a single optimisation objective. How-
ever, many metabolic engineering problems require simultaneous
optimisation of a number of objectives that may be competing
and non-commensurate. A better understanding of the trade-offs
among these objectives will be valuable in identifying correspond-
ing cellular metabolic functionalities. The presence of more than
one objective in studying metabolic systems is very common and
has been appreciated by researchers recently. Burgard, Pharkya, and
Maranas (2003) have proposed an optimisation-based framework,
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Nomenclature

c0 standard state concentration (1 M) (mol/l)
G extensive Gibbs free energy of a system (kJ)
G′ extensive transformed Gibbs free energy of a system

(kJ)
�G Gibbs free energy change of reaction (kJ)
�G0 standard Gibbs free energy change of reaction (kJ)
�f G0

i
standard formation Gibbs free energy of species i at
specified T, P, and I (kJ/mol)

�f G′0 (react) standard formation Gibbs free energy of reac-
tant i at specified T, P, pH and I (kJ/mol)

�f G′
e ∈ EM standard formation Gibbs free energy of external

metabolites e at specified T, P, pH and I (kJ/mol)
�G′0

p ∈ P standard Gibbs free energy change of pathway p at
specified T, P, pH and I (kJ/mol)

I ionic strength (mol/l)
Ni(H) number of H atoms in species I
pH −log([H+]/c0)
P pressure (bar)
R gas constant (8.31451 J K−1 mol−1) (J K−1 mol−1)
T temperature (K)
zi charge of ion I
�0

i
standard chemical potential of species i at specified
T, P, and I (kJ/mol)

rreactinge reacting rate of external metabolites e (e ∈ UPT) (% of
molar glucose uptake rate)

K equilibrium constant of reaction
Bopt(p) optimal mass flux distribution of pathway p (% of

molar glucose uptake rate)
Gtot total Gibbs free energy change of the system

(kJ/100 mol of glucose)
Gopt

tot minimum Gibbs free energy change of the metabolic
system (kJ/100 mol of glucose)

pH′ optimal corresponding cellular condition of pH
I′ optimal corresponding cellular condition of ionic

strength (mol/l)

Sets, variables and parameters
IM {1, 2, . . ., X/internal metabolites}
EM {1, 2, . . ., Y/external metabolites and cofactors}
R {1, 2, . . ., N/reactions (or reaction steps) in a

metabolic system}
P {1, 2, . . ., M/pathways in a metabolic system}
OBJ {e/objective product under optimisation, OBJ ⊂ EM}
UPT {e/external metabolite from external metabolite

measurement, UPT ⊂ EM}

Variables and parameters
V̄ property vector of metabolic flux in individual reac-

tions j, ∀j ∈ R
B̄ property vector of metabolic flux in elementary

pathways p, ∀p ∈ P
B̄opt property vector of optimal metabolic flux for ele-

mentary pathways p, ∀p ∈ P
S̄ stoichiometric matrix for internal metabolite i

(i ∈ IM) in reaction j (j ∈ R)
Ā stoichiometric matrix for reaction j (j ∈ R) in elemen-

tary pathway p (p ∈ P)
Ū stoichiometric matrix for external metabolites e

(e ∈ EM) in pathway p (p ∈ P)
VE property vector of metabolic flux for external

metabolites e,∀e ∈ EM

GE property vector of standard formation Gibbs free
energy of external metabolites e (e ∈ EM) at specified
pH and ionic strength

GP property vector of standard Gibbs free energy
changes for elementary pathways p (p ∈ P)

rreacting property vector of the reacting rates of given steady
external metabolites e (e ∈ UPT)

OBJECT property vector of the productivity of desired exter-
nal metabolite e (e ∈ OBJ)

called ObjKnock, for deducing genetic manipulations that lead to
overproduction. This framework is aimed at balancing conflicting
engineering and cellular objectives. This bi-objective optimisation
problem is transformed into a single objective problem based on the
strong duality theorem (Burgard et al., 2003). With this theorem,
the optimality of the primal problem is regarded as a constraint to
the dual problem giving rise to two nested optimisation problems.

Thermodynamic insights into metabolic reaction networks or
pathways, such as the relationship between the driving force for
growth in terms of Gibbs energy dissipation and biomass yield, are
useful in estimating the key parameters in biotechnological cultures
and thus to address reaction viability of bioprocesses (Von Stockar &
van der Wielen, 2005). Similarly, Beard, Liang, and Qian (2002) have
also emphasised the use energy balance analysis, the theory and
methodology for enforcing the laws of thermodynamics, for elim-
inating thermodynamically infeasible results associated with FBA.
Optimal metabolic fluxes based on mass balance does not ensure
feasibility of metabolic pathways in the system. In thermodynamic
terms, the difference in Gibbs free energy sets the driving force
for any system undergoing changes. Thus, thermodynamic analy-
sis based on the Gibbs free energy change is applied to elucidate
the spontaneity and existence of driving force for the occurrence of
metabolic pathways responsible for a desired product. Moreover,
a pathway for which the free energy change is large and negative
has an equilibrium that favours the side of products. Therefore, the
thermodynamic tools can be instrumental to the selection of fea-
sible pathways and identifying optimal cellular environment for
metabolic systems. The minimisation of Gibbs free energy change
and the maximisation of productivity of desired metabolites need
to work simultaneously for an overall optimal selection of pathways
and set of enzymes responsible for these pathways.

Our initial effort tackled the metabolic product engineering
problem sequentially based on linear programming in general alge-
braic modelling system (GAMS) (Xu, Smith, & Sadhukhan, 2008).
However, development of a more effective multi-objective optimi-
sation approach is becoming necessary and valuable. In this work,
we have introduced a newly developed multi-objective optimisa-
tion approach, non-dominated sorting genetic algorithms (NSGAs),
by Deb (2001) to simultaneously optimise metabolic productivity
and thermodynamic performance, as an integrated and engineered
problem, for the first time.

Genetic algorithms (GA) illustrated in Fig. A1 and Appendix A are
useful optimisation tools to address many industrial engineering
activities or real-life problems. However, application of GA to opti-
mise cellular productivity has been limited so far. Morbiducci, Tura,
and Grigioni (2005) and Zhang and Yao (2007) have used genetic
algorithm for mathematical modelling of glucose metabolism and
simulation of flux distribution for central metabolism of Saccha-
romyces cerevisiae. In their studies, GA were used by virtue of their
conceptual simplicity, the ease of programming entailed, and no
requirement for a fixing initial value of model parameters, but
restricted to solve single objective optimisation problems. Never-
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