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a b s t r a c t

This paper proposes an evolving ant direction differential evolution (EADDE) algorithm for solving the
optimal power flow problem with non-smooth and non-convex generator fuel cost characteristics. The
EADDE employs ant colony search to find a suitable mutation operator for differential evolution (DE)
whereas the ant colony parameters are evolved using genetic algorithm approach. The NewtoneRaphson
method solves the power flow problem. The feasibility of the proposed approach was tested on IEEE 30-
bus system with three different cost characteristics. Several cases were investigated to test and validate
the robustness of the proposed method in finding the optimal solution. Simulation results demonstrate
that the EADDE provides superior results compared to a classical DE and other methods recently
reported in the literature. An innovative statistical analysis based on central tendency measures and
dispersion measures was carried out on the bus voltage profiles and voltage stability indices.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the present day power systems, optimal power flow (OPF)
is an important tool for power system operators both in planning
and operating stages. The main purpose of an OPF is to determine
the optimal operating state of a power system and the corre-
sponding settings of control variables for economic operation,
while at the same time satisfying various equality and inequality
constraints. The OPF problem, in general, is a large-scale highly
constrained nonlinear non-convex optimization problem. Many
mathematical programming techniques [1] such as linear
programming [LP] [2,3], nonlinear programming (NLP) [4],
quadratic programming (QP) [5], Newton method [6], and interior
point methods (IPM) [7] have been applied to solve the OPF
problem successfully. Usually, these methods rely on the
assumption that the fuel cost characteristic of a generating unit is
a smooth, convex function. However, there are situations where it
is not possible, or even appropriate, to represent the unit’s fuel
cost characteristics as a convex function. This situation arises

when valve-points, units’ prohibited operating zones, and piece-
wise quadratic cost characteristics are present [8].

In recent years, many heuristic algorithms, such as genetic
algorithms (GA) [9], evolutionary programming [10], simulated
annealing [11], tabu search [12], and particle swarm optimization
[13] have been proposed for solving the OPF problem, without
any restrictions on the shape of the cost curves. The results
reported were promising and encouraging for further research in
this direction. Moreover, many hybrid algorithms have been
introduced to enhance the search efficiency. For instance,
a hybrid tabu search and simulated annealing (TS/TA) [14] was
applied to solve the OPF problem with flexible alternating current
transmission systems (FACTS) device; a hybrid evolutionary
programming and tabu search or improved tabu search (ITS) [15]
was used to solve the economic dispatch problem with non-
smooth cost functions. Meanwhile, an improved evolutionary
programming (IEP) [16] was successfully used to solve combina-
torial optimization problems.

In the recent past, Storn and Price introduced a powerful evolu-
tionary algorithm called differential evolution (DE) to solve the OPF
problems [17].DE is anumericaloptimizationapproach that is simple,
easy to implement, significantly faster than other algorithms, and
robust. DE combines simple arithmetic operators with the classical
operators of crossover, mutation and selection to evolve from
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a randomly generated starting population to a final solution. The
fittest of an offspring competes one-to-one with the corresponding
parent, which is different from the other evolutionary algorithms.
This one-to-one competition gives rise to a faster convergence rate.

The DE has been successfully applied to various power system
optimization problems such as generation expansion planning [18],
hydrothermal scheduling [19]. Figueroa and Cederio [20] applied
DE for power system state estimation. Coelho andMariani [21] used
this algorithm for economic dispatch with valve-point effect. M.
Basu [22] applied DE for solving the OPF problem incorporating
FACTS devices. The hybrid differential evolution (HDE) has been
employed for the solution of a large capacitor placement problem
[23]. The mixed integer hybrid differential evolution (MIHDE) has
been employed for hydrothermal coordination [24], hydrothermal
optimal power flow [25], and network reconfiguration problem
[26].

Colorni [27] proposed the concept of ant system (AS) and
applied to the traveling salesman problem (TSP) [28]. The Ant
algorithm has been inspired by the behavior of real ant colonies, in
particular, by their foraging behavior. Recently, the ant algorithm
has been applied to various optimization problems, such as the
short-term generation scheduling problem [29], unit commitment
[30], and hydro-electric generation scheduling [31].

In this paper, an efficient evolving ant direction DE based
approach is proposed to solve the OPF problem with non-smooth
cost functions. Evolving ant directionmutation operator selection is
suggested to the original DE algorithm. Though there are five
mutation operations stated in this paper, the EADDE uses only one
mutation operator during the solution process. The proposed
EADDE method embedded with the ant colony search is able to
constantly choose different but most appropriate mutation opera-
tors during the solution process to accelerate the search for the
global optimum solution. The proposed approach has been exam-
ined and tested on IEEE 30-bus standard test system with three
different types of generator cost curves. Simulation results
demonstrate that the EADDE algorithm is superior to the original
DE algorithm and provides significantly better results compared to
those reported in the literature.

The remainder of the paper is organized as follows: Section 2
describes the formulation of an optimal power flow problem,
while section 3 explains the standard DE approach. Section 4 then
details the procedure of proposed evolving ant direction DE.
Section 5 presents the statistical analysis and Section 6 presents the
results of the optimization and compares methods to solve the case
studies of optimal power flow problems with IEEE 30ebus system.
Lastly section 7 provides the conclusion.

2. Problem formulation

The main goal of the OPF is to optimize a certain objective
subject to several equality and inequality constraints. The problem
can be mathematically modeled as follows:

Min OFðx;uÞ (1)

subject to

gðx;uÞ ¼ 0 (2)

hmin � hðx;uÞ � hmax (3)

where vector x denotes the state variables of a power system
network that contains the slack bus real power output ðPG1Þ,
voltage magnitudes and phase angles of the load buses (Vi,di), and
generator reactive power outputs ðQGÞ. Vector u represents control
variables that consist of real power generation levels ðPGiÞ and

generator voltages magnitudes ðjVGijÞ, transformer tap setting ðTKÞ,
and reactive power injections (QCK) due to volt-amperes reactive
(VAR) compensations; i.e.,

u ¼ ½PG2.PGN;VG1.VGN; T1.TNT ;QC1.QCS� (4)

where N ¼ number of generator buses,
NT ¼ number of tap changing transformers
CS ¼ number of shunt reactive power injections.

The OPF problem has two categories of constraints:

2.1. Equality constraints

These are the sets of nonlinear power flow equations that
govern the power system, i.e,

PGi � PDi �
Xn
j¼1

jVij
��Vj
����Yij��cos�qij � di þ dj

� ¼ 0 (5)

QGi � QDi þ
Xn
j¼1

jVij
��Vj
����Yij��sin�qij � di þ dj

� ¼ 0 (6)

where PGi and QGi are the real and reactive power outputs injected
at bus i respectively, the load demand at the same bus is repre-
sented by PDi and QDi, and elements of the bus admittance matrix
are represented by jYijj and qij.

2.2. Inequality constraints

These are the set of constraints that represent the system
operational and security limits like the bounds on the following:

1) generators real and reactive power outputs

Pmin
Gi � PGi � Pmax

Gi ; i ¼ 1;.;N (7)

Qmin
Gi � QGi � Qmax

Gi ; i ¼ 1;.;N (8)

2) voltage magnitudes at each bus in the network

Vmin
i � Vi � Vmax

i ; i ¼ 1;.;NL (9)

where NL ¼ number of load buses.

3) transformer tap settings

Tmin
i � Ti � Tmax

i ; i ¼ 1;.;NT (10)

4) reactive power injections due to capacitor banks

Qmin
Ci � QCi � Qmax

Ci ; i ¼ 1;.;CS (11)

5) transmission lines loading

Si � Smax
i ; i ¼ 1;.;nl (12)

where nl ¼ number of transmission lines.
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