Computers and Chemical Engineering 32 (2008) 3176-3186

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Object-oriented modelling of virtual-labs for education
in chemical process control

Carla Martin-Villalba*, Alfonso Urquia, Sebastian Dormido

Dept. Informadtica y Automadtica, UNED, Juan del Rosal 16, 28040 Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 27 January 2006

Received in revised form 9 September 2007
Accepted 19 May 2008

Available online 7 July 2008

Easy Java Simulations (Ejs) and Sysquake are two software tools specifically intended for implementa-
tion of virtual-labs. They allow easy definition of the virtual-lab view (i.e., the model-to-user interface).
However, the model definition capabilities and the numerical solvers provided by these tools are not the
state-of-the-art.

On the other hand, the use of the object-oriented modelling language Modelica reduces considerably
the modelling effort and permits better reuse of the models. Modelica is supported by the state-of-the-
art simulation environment Dymola. Nevertheless, Modelica does not provide the interactive capabilities
required for virtual-lab implementation.

The approach proposed in this manuscript is to combine the best features of each tool. Ejs and Sysquake
capability for building interactive user-interfaces composed of graphical elements, whose properties are
linked to the model variables. Modelica capability for physical modelling and Dymola capability for sim-
ulating DAE-hybrid models. This novel approach has been successfully applied to set up virtual-labs for

Keywords:

Control education

Virtual laboratory
Interactive simulation
Chemical process control
Object-oriented modelling
Modelica

control education.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Virtual-labs are effective educational tools for training of pro-
cess engineers and plant operators. They provide a flexible and
user-friendly method to define the experiments to be performed on
the mathematical model (Jimoyiannis & Komis, 2001). Virtual-labs
allow users to design and perform their own simulation experi-
ments. As aresult, users become active players in their own learning
process, which motivate them to learn.

Virtual-labs are composed of: (1) the simulation of the mathe-
matical model describing the relevant properties of the system; (2)
the interactive user-to-model interface, referred to as virtual-lab
view; (3) a narrative that provides information about the system
and the use of the virtual-lab.

The virtual-lab view is intended to provide a visual represen-
tation of the model dynamic behaviour and to facilitate the user’s
interactive actions on the model. The graphical properties of the
view elements are linked to the model variables, producing a bidi-
rectional flow of information between the view and the model. Any
change of a model variable value is automatically displayed by the
view. Reciprocally, any user interaction with the view automatically
modifies the value of the corresponding model variable.

* Corresponding author. Tel.: +34 913988253.
E-mail address: carla@dia.uned.es (C. Martin-Villalba).

0098-1354/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2008.05.011

The model behaviour can be represented in different ways. For
instance, plotting the model variables against each other and by
means of animated schematic diagrams of the system. In addition,
linear systems can be described using pole-zero diagrams and fre-
quency response diagrams (i.e., Bode and Nyquist diagrams). User’s
actions on the model can be performed by manipulating differ-
ent elements of the view, such as buttons, sliders, check-boxes and
certain graphic elements of the model schematic diagram.

1.1. Types of interactivity

In some cases, the virtual-lab is intended to emulate the real-
time response of the plant, allowing the user to make real-time
decisions. In these kind of applications, the user is allowed to
perform interactive actions on the model at any time during the
simulation run. The user can change the value of the model inputs,
parameters and state variables, perceiving instantly how these
changes affect to the model dynamic. An arbitrary number of
actions can be made on the model during a given simulation run.
This type of interactivity is called runtime interactivity.

In other cases, the goal is to obtain the simulated response
of the model for a specific time period, and use it to automat-
ically compute linear approximations to the system and their
frequency-domain characteristics, to perform automatic synthesis
of controllers, etc. In this other kind of applications, the user’s action
triggers the start of the simulation, which is run to completion.


http://www.sciencedirect.com/science/journal/00981354
mailto:carla@dia.uned.es
dx.doi.org/10.1016/j.compchemeng.2008.05.011

C. Martin-Villalba et al. /| Computers and Chemical Engineering 32 (2008) 3176-3186 3177

During the simulation run, the user is not allowed to interact with
the model. Once the simulation run is finished, the results are dis-
played and a new user’s action on the model is allowed. This type
of interactivity is called batch interactivity. The implementation of
virtual-lab with runtime and with batch interactivity is discussed
in this manuscript.

1.2. Virtual-lab implementation software

Several virtual-lab packages, conceived to illustrate some
selected topics in automatic control, have been implemented.
ICTools and CCSDEMO (Johansson, Gdfvert, & Astrém, 1998;
Wittenmark, Higlund, & Johansson, 1998) are two packages devel-
oped at the Department of Automatic Control, Lund Institute of
Technology. Packages especially designed for chemical process con-
trol education have been developed by (Cooper & Dougherty, 2000;
Cooper, Dougherty, & Rice, 2003; Doyle, Gatzke, & Parker, 1998;
Young, Mahoney, & Svrcek, 2001). Matlab/Simulink is widely used
for the development of virtual-labs in the context of control edu-
cation. This modelling and simulation environment supports the
graphical block diagram modelling. Other virtual-lab implementa-
tions use different software tools, such as the process modelling
tool Hysys.

On the other hand, there are software tools specifically intended
for implementation of virtual-labs. These tools: (1) provide their
own procedures to define the narrative, the model and the view
of the virtual-lab; (2) guide the virtual-lab programmer in these
tasks; (3) automatically generate the virtual-lab executable code.
Easy Java Simulations and Sysquake are two of these tools.

Sysquake (Calerga, 2004; Piguet, Holmberg, & Longchamp, 1999)
is a Matlab-like environment for developing virtual-labs with batch
interactivity. Typically, a Sysquake application contains several
interactive graphics, which are displayed simultaneously. These
graphics contain elements that can be manipulated using the
mouse. While one of these elements is being manipulated, the other
graphics are automatically updated to reflect this change. The con-
tent represented by each graphic, and its dependence with respect
to the content of the other graphics, is programmed using LME (an
interpreter for numerical computation which is mostly compatible
with Matlab). Sysquake can be extended by plug-ins and libraries
of functions written in LME.

Easy Java Simulations (Esquembre, 2004) is an open source,
Java-based software tool intended to implement virtual-labs
with runtime interactivity. It can be freely downloaded from
http://fem.um.es/Ejs/. Ejs guides the user in the process of creating
the narrative, the model and the view of the virtual-lab. It generates
automatically: (1) the interactive simulation as a Java application;
(2) HTML pages containing the narrative and the interactive simu-
lation as a Java applet. Then, the user can run the virtual-lab and/or
publish it on the Internet. Ejs allows the user to include new Java
classes.

A strong point of these tools is that they allow easy definition
of the virtual-lab view. Easy Java Simulations (hereafter cited as
Ejs) provides a complete set of interactive graphic elements which
are ready to be used, in a simple drag-and-drop way, to compose
the view. Additionally, it facilitates the integration of multime-
dia elements such as video and sound. Sysquake supports built-in
functions to include in the view different types of interactive plots
and interactive graphic elements (i.e., radio-buttons, sliders, dialog
boxes, etc.).

However, the model definition capabilities and the numeri-
cal solvers provided by these tools are not the state-of-the-art.
They support the block diagram modelling. This modelling paradigm
requires of explicit state models (i.e., ordinary differential equa-
tions) and the computational causality of the model must be

explicitly set (i.e., the blocks have a unidirectional data flow
from inputs to outputs). These restrictions do not facilitate the
model reuse and they strongly condition the modelling task, which
requires a considerable effort. For instance, dummy dynamics need
to be introduced in the model to avoid the establishment of sys-
tems of simultaneous equations. The model programmer has to
manipulate the model to transform its equations to the form of
ordinary differential equations (ODE). As a consequence, the mod-
elling and simulation capabilities supported by these tools are not
the best possible ones for describing the large models used in the
physical-chemical field.

The physical modelling paradigm, supported by the object-
oriented modelling languages, is an attractive alternative to
the block diagram modelling (Astrom, Elmqvist, & Mattsson,
1998). Object-oriented modelling languages support a declarative
description of the model, based on equations instead of assign-
ment statements. The computational causality is not included in
the model. Thus, a model can adapt to more than one data flow
context. The modelling knowledge is represented as differential,
algebraic and discrete equations that may change by being triggered
by events (i.e., hybrid-DAE models).

Some object-oriented modelling languages are EcosimPro Lan-
guage, gPROMS and Modelica. The two first are commercial
languages, whereas Modelica is a free language. The Modelica
language has been designed by the developers of the object-
oriented modelling languages Allan, Dymola, NMF, ObjectMath,
Omola, SIDOPS+, Smile and a number of modelling practitioners
in different fields. It is intended to serve as a standard format
for the external model representation, so that models arising in
different engineering fields can be exchanged between tools and
users.

Currently, a number of free and commercial component
libraries in different domains are available (http://www.
modelica.org/), including electrical, mechanical, thermo-fluid
and physical-chemical. Modelica is well suited for describing the
type of multi-domain models used in automatic control. Model-
ica language is supported by several simulation environments,
including Dymola (Dynasim, 2002).

The use of the Modelica language reduces considerably the mod-
elling effort and permits better reuse of the models. Dymola is
the state-of-the-art simulation environment supporting Modelica.
During the model translation, Dymola carries out the manipula-
tions intended to transform the model into an efficiently solvable
form. As aresult, it generates highly efficient C code. Previous efforts
on virtual-lab implementation using Modelica language include
(Engelson, 2000; Martin, Urquia, & Dormido, 2007).

1.3. Contributions of this paper

The approach proposed in this manuscript is to combine the
best features of each tool. Ejs and Sysquake capability for building
interactive user-interfaces composed of graphical elements, whose
properties are linked to the model variables. Matlab/Simulink capa-
bility for modelling of automatic control systems and for model
analysis. Modelica capability for physical modelling, and finally
Dymola capability for simulating hybrid-DAE models. This soft-
ware combination approach is discussed for implementation of
virtual-labs with runtime interactivity (Section 2) and with batch
interactivity (Section 3).

This novel approach has been applied to the implementation of a
set of virtual-labs that are being used for process control education
at the National University of Distance Education of Spain (UNED).
These virtual-labs are concerned with some key aspects in pro-
cess control education (Perkins, 2002), illustrating a range of topics
that should be mastered by process system engineers (Johansson


http://fem.um.es/Ejs/
http://www.modelica.org/
http://www.modelica.org/

Download English Version:

https://daneshyari.com/en/article/173535

Download Persian Version:

https://daneshyari.com/article/173535

Daneshyari.com


https://daneshyari.com/en/article/173535
https://daneshyari.com/article/173535
https://daneshyari.com

