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a b s t r a c t

The assumption of local equilibrium is validated in four different systems where heat and mass are

transported. Mass fluxes up to 13 kmol=m2 s and temperature gradients up to 1012 K=m were used. A

two-component mixture, two vapor–liquid interfaces, a chemical reaction in a temperature gradient

and gas adsorbed in zeolite were studied using non-equilibrium molecular dynamics simulations. In all

cases, we verified that thermodynamic variables obeyed normal thermodynamic relations, with an

accuracy better than 5%. The heat and mass fluxes, and the reaction rate were linearly related to the

driving forces. Onsager’s reciprocal relations were validated for two systems. Equipartition of kinetic

energy applied to all directions. There was no need to invoke any dependence of the thermodynamic

variables on the gradients. Away from global equilibrium, the local velocity distribution was found to

deviate from the Maxwell distribution in the direction of transport. The deviation was in a form that is

used by the Enskog method to solve the Boltzmann equation. New general criteria were formulated for

thermodynamic state variables, P. In order to obey local equilibrium, the relative fluctuation in the state

variable needs only to fulfill dP=Pt1=
ffiffiffiffi
N
p

, where N is the number of particles in the volume element.

The variation of the variable in the direction of transport needs to fulfill DP=P ¼ ‘xrP=P51, where the

length of the volume element in direction of transport, ‘x, is of the order of the diameter of a molecule.

These criteria are much less restrictive than proposed earlier, and allows us to use thermodynamic

equations in open volume elements with a surprisingly small number (8–18) of particles.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the modeling of chemical and mechanical processes in
typical engineering problems, it is normally taken as granted that
thermodynamic equations apply and can be used in any volume
element of the system. But systems of interest to engineering are
now becoming smaller. Microfluid processes and nanoscale
control volumes are being investigated at large fluid velocities
and gradients. It is therefore of interest to examine when our
normal thermodynamic equations apply. How far can we go down
in dimensions and time, and still use these equations? Can criteria
be formulated such that we know that they hold?

It is thus of great practical interest to have quantitative criteria
for the validity of the assumption of local equilibrium. Such can be

obtained by asking how big can the gradients be, or how small can
the system be, in terms of the number of interacting particles,
before thermodynamic relations stop being valid. When can we
expect deviations in the presence of chemical reactions, or during
chemisorption of reactants on a surface? And how can the system
be characterized, when local equilibrium applies, in a system that
is clearly out of global equilibrium?

In the field of non-equilibrium thermodynamics, the assump-
tion of local equilibrium is of fundamental importance. When the
equations of thermodynamics hold in local volume elements, we
can use the Gibbs relation and calculate entropy fluxes and
entropy production in the presence of irreversible processes. The
assumption is crucial for the proof of the Onsager relations [1–3].

Knowledge of conditions for local equilibrium will therefore
not only have a practical consequence for the use of thermo-
dynamic equations on a macroscopic level [3] but also on a
mesoscopic [4–7] level and thus for the development of thermo-
dynamic theories, so as to be able to deal with nanosystems. To
our knowledge these issues have not been thoroughly addressed
before. This work attempts to summarize and to expand on some
earlier works on this topic [9–24].
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The method of non-equilibrium molecular dynamics (NEMD)
simulation is well suited to examine such questions, see [8] and
references therein. The technique is invaluable in its ability to give
assumptions made in the theory a quantitative and molecular
footing. In NEMD simulations, one does not a priori assume
validity of thermodynamic relations. Thermodynamic properties
are being derived from a purely mechanical description, described
in Section 2.2. The method will therefore serve as an independent
verification of thermodynamic relations.

The NEMD method has already been used in some studies that
examine the basic assumption of non-equilibrium thermody-
namics. This work gives a review of what has been done so far
using this technique, in homogeneous mixtures [9–17], in systems
with interfaces [18–21] and on chemical reactions [22–24]. We
shall add new results on heterogeneous microporous systems for
further substantiation.

With the NEMD technique one is able to generate large
temperature gradients, as high as 6� 1011 K=m [9,22], and use
large mass fluxes, around 13 kmol=m2 s [20]. These are extreme
conditions that seldom appear in engineering problems, so one
would expect deviations from local equilibrium near these values.
Deviations have so far only been found for even larger tempera-
ture gradients, as we shall see.

One would expect that non-equilibrium statistical mechanics
gives criteria for validity of local equilibrium. As discussed
extensively by Kreuzer in his book [25] such criteria were given
rigorously only for a dilute gas. For such gases Meixner [26,27]
used the Enskog solution method of the Boltzmann equation and
found that local equilibrium is valid when the temperature
variation DT over a mean free path ‘ is much smaller than the
absolute temperature, DT ¼ ‘rT5T. Similar conditions applied to

other thermodynamic variables. Kreuzer argued that the differ-
ence DP in a variable across a cell with thickness lx is at most of
the order of the fluctuation of the variable, dP; in the cell. The
fluctuation should be much smaller than the average value of the
variable P. Combining these two criteria, Kreuzer gave as basic
criterion for the validity of local equilibrium:

DP ¼ lxrPtdP5P (1)

For a gas lx ¼ ‘ was the mean free path. In a liquid or a solid there
is no natural way to choose lx. Kreuzer proceeded to give
arguments to prove the general validity of his criterion and to
establish the size of lx. We refer to his book for the details. On the
basis of the results from the NEMD simulations, to be discussed
below, we shall conclude, like Tenenbaum et al. [9] and Hafskjold
and Ratkje [13], that his criterion is much too restrictive.

Orban and Bellemans [28] as well as Haile [29] proposed that
the velocity part of Boltzmann’s HB function

HB ¼

Z
f ðvÞ ln f ðvÞdv (2)

can be used as a criterion for local equilibrium. (Subscript B has
been added to separate HB from the enthalpy.) Here f ðvÞ is the
velocity distribution of the particles in the system. By comparing
HB to the value found from the Maxwell distribution one has a
measure of how close a volume element is to equilibrium. We
shall come back to how to choose the size of a volume element in
a liquid or a solid.

NEMD simulations allow us to characterize non-equilibrium
systems on the molecular scale, and one purpose of these studies
has been to develop a molecular understanding of the properties
of a system that obeys local equilibrium. Hafskjold and Ratkje [13]
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NomenclatureRoman symbols

aij parameter in Lennard-Jones potential
bij parameter in Lennard-Jones potential
c concentration, mol=m3

DrG reaction Gibbs energy, J/mol
f ðvÞ velocity distribution function
Fij force acting on i due to j, N
Hi partial molar enthalpy of i, J/mol
HB Bolzmann H function
kB Boltzmann constant, J/K
kf reaction constant for forward reaction
J mass flux, mol=m2 s
Jq; J
0
q total heat flux, measurable heat flux J=m2 s

‘ mean free path, m
lx cell thickness, m
Lx; Ly; Lz box dimensions, m
mi mass of i, kg
NA Avogadro’s number
N number of particles
p pressure, Pa
P thermodynamic variable
R gas constant, J/K mol
r reaction rate, mol=m3 s
rij distance between particle i and j, m
T temperature, K
t time, s
U internal energy, J
uij Lennard-Jones pair potential, J
x; y; z cartesian coordinates, m

V volume, m3

v velocity, m/s

Greek symbols

a;b symbols for directions
d describes size of fluctuation
g surface tension, N/m
eij minimum of potential between particle i and j, J
F potential surface for a chemical reaction, J
fi potential energy of particle i in the field of all other

particles, J
fk;l a function defined by Eq. (22)
r overall particle density in the simulation box, kg=m3

sij distance between particles i and j when the potential
is zero, m

Subscripts, superscripts

c cut-off distance in Lennard-Jones potential
i particle i

k; n component k in layer no. n
k parallel component
? normal component
H high
L low
s switch distance in Lennard-Jones potential
2 pair potential for a reaction
3 triplet potential for a reaction
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