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a b s t r a c t

The mapping method has proven its efficiency as an analysis and optimization tool for mixing in many
different flow devices. In this paper, we present a new approach to compute the coefficients of the distri-
bution matrix, which is, both in terms of computational speed and complexity, more easy to implement
as compared to the original approach developed in our group. The new approach is of the same accu-
racy as the original approach as is demonstrated by studying mixing in the standard two-dimensional
cavity flow. The power of the new approach is that it can easily be implemented to analyze mixing in
complex geometries where the original approach fails. This is demonstrated by analyzing mixing in a
static Sulzer SMX mixer. To enhance the availability of the mapping method for general users of CFD in
commercial packages like Fluent, CFX, Star CD, etc., we finally add an example of an implementation of
the new approach in Matlab, applying it to study mixing in a time periodic sine flow (TPSF).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous mixing studies using the mapping method applied to
various industrial flow devices as well as to a number of microfluidic
devices have shown that the method is an efficient tool to perform
fast analyses and, more important, make a real optimization pos-
sible of various designs or mixing protocols (Anderson & Meijer,
2000; Fard, Famili, & Anderson, 2008; Galaktionov, Anderson,
& Peters, 1997; Galaktionov, Anderson, Peters, & Meijer, 2002,
2003; Kang, Singh, Kwon, & Anderson, 2008; Kruijt, Galaktionov,
Anderson, Peters, & Meijer, 2001; Kruijt, Galaktionov, Peters, &
Meijer, 2001; Singh, Anderson, Speetjens, & Meijer, 2008; Singh,
Kang, Meijer, & Anderson, 2008). Chaotic mixing of viscous liquids
in laminar flows is based on repetitive stretching and folding,
the so-called bakers transformation. Spencer and Wiley (1951)
suggested that the distribution of material in such flows can be
handled quite well by the use of matrix methods. The mapping
method is based on their suggestion and describes the transport
of a conservative quantity from one state to another by means of
a discretized mapping stored as a matrix. In the standard mapping
method the quantity is the local concentration, in the extended
mapping method it is the area tensor describing the structure of
the dispersed phase in a mixture of two fluids. In both cases, we
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need the matrix describing the transport of fluid from an initial
cross-section to a final one (for spatially periodic flows) or from an
initial time to a final time (for time-periodic flows). The coefficients
of the matrix, the distribution coefficients, contain the fraction
of material from part of the domain that is transferred to various
parts of the domain when a specified flow is applied. In the original
approach of mapping, adaptive tracking of boundaries is applied to
obtain the fraction by determining intersections of a deformed cell
with a original one. However, this interfacial tracking approach is
not always feasible and it fails in mixers with complicated geome-
tries. Apart from that the method requires lots of additional book
keeping and necessitates time to time insertion of markers on the
edges that are stretched or curved, it requires renumbering of sur-
faces, flipping of surfaces, restructuring surfaces, etc. (Galaktionov
et al., 1997; Galaktionov, Anderson, Peters, & Van De Vosse, 2000).
Therefore, a simpler approach of mapping to compute the coeffi-
cients of the mapping matrix would allow for a much wider use of
the method. Here, we present a new approach for mapping based
on straight forward particle tracking, an option that is readily
available in most CFD packages. Accuracy of the new approach is
demonstrated by analyzing mixing in a standard two-dimensional
lid-driven cavity flow. The ability to analyze complicated shaped
geometries is demonstrated by studying mixing in a Sulzer SMX
static mixer, which contains complex mixing elements. To show
user-friendliness we implemented the new approach of mapping
in Matlab, applying it to a well-known time periodic sine flow
(TPSF) (Cerbelli, Vitacolonna, Adrover, & Giona, 2004; Franjione &
Ottino, 1992; Liu, Muzzio, & Peskin, 1994), where velocity field as
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well as the particle trajectories are analytically known. The Matlab
code is downloadable from www.mate.tue.nl/∼anderson.

2. Mapping method: the original interfacial tracking
approach

A distribution matrix ϕ is formed to store information about the
distribution of fluid from one discretized cross-section to the next
due to a specified flow. To obtain the coefficients of ϕ, the initial
cross-section of the flow domain is subdivided into a large number
of discrete cells (N) of identical size. During flow, the material from
a donor cell is transferred to different recipient cells. The fraction
of material that is transferred from the donor cell to a recipient cell
gives the distribution coefficient of the donor cell with respect to
the recipient cell. Thus, in total N cells form a distribution matrix of
the order N × N.

The original mapping method (Anderson & Meijer, 2000;
Galaktionov et al., 1997, 2002, 2003; Kruijt, Galaktionov, Anderson
et al., 2001; Kruijt, Galaktionov, Peters et al., 2001) used tracking
boundaries of cells by putting tracers on the boundaries of cells
and applying interfacial tracking (adaptive front tracking) to obtain
the accurate deformed boundaries of the cells (see Fig. 1). In this
way, the discrete coefficient ϕij equals the fraction of deformed cell
˝j at z = z0 + �z (or t = t0 + �t) that is found in the original cell
˝i at z = z0 (or t = t0):

ϕij =

∫
˝j |z=z0+�z

⋂
˝i |z=z0

dA∫
˝j |z=z0

dA
. (1)

Tracking all interfaces of all N cells during a flow over a dis-
tance �z can be done, as previously demonstrated for different
flows (Anderson & Meijer, 2000; Galaktionov et al., 1997, 2002,
2003; Kruijt, Galaktionov, Anderson et al., 2001; Kruijt, Galaktionov,
Peters et al., 2001), but it is cumbersome to track interfaces
experiencing complicated deformation patterns. Generally, in mix-
ing devices producing complicated mixing patterns or in mixing
devices which have complex geometries, the interfacial tracking
to do adaptive tracking of boundaries fails. Therefore, here we
propose a new straight forward way to compute the mapping
coefficient.

Fig. 1. Mapping using the interfacial tracking approach: depiction of cell advection
and computing the coefficient ϕij; ϕij is the fraction of the area of ˝j that is donated
to ˝i during the specified flow.

Fig. 2. Mapping using the particle tracking approach: illustration of the computation
of the coefficients ˚ij of the mapping matrix �. The cell ˝j at z = z0 is covered with
a number of markers that are tracked during flow in �z (to arrive at the final cross-
section z = z0 + �z). The ratio of the number of markers received by the recipient
cell ˝i to the initial number of markers in ˝j is determined (in this example ˚ij is
6/25).

3. Mapping method: the new particle tracking approach

Fig. 2 depicts how the mapping coefficients are calculated in the
new formulation of the method. To approximate the coefficients
of the mapping matrix (or distribution matrix), K markers inside
all cells are tracked. The markers are uniformly distributed in the
cells without touching the boundaries. Then, to determine the final
distribution of markers, they are advected during the flow from
z = z0 to z = z0 + �z. If the number of markers in the donor cell ˝j

is Mj at z = z0 and the number of markers found after tracking in the
recipient cell ˝i is Mij at z = z0 + �z, then the mapping coefficient
˚ij is calculated as

˚ij = Mij

Mj
. (2)

In other words, the coefficient ˚ij is again the measure of the frac-
tion of the total flux of cell ˝j donated to cell ˝i. If the number of
markers tracked is large enough, then ˚ij approaches ϕij . As demon-
strated later in this article, here, it is advantageous to use backward
particle tracking to track the particles: particles originally filling
the recipient cell are tracked backward against the flow direction
to find their parent cells. The advantage is that all the recipient
cells (at the outlet) receive an equal number of particles, while in
forward tracking there is no guarantee that all the recipient cells
have equal number of particles. This is due to the fact that any
ordered array of particles at the inlet becomes disordered at any
downstream position.

4. Mapping the concentration and defining a measure of
mixedness

Once the mapping matrix � (or ϕ) is computed, the concen-
tration distribution, denoted as a column vector with length N,
C1 after the deformation from z = z0 (or t = t0) to z = z0 + �z (or
t = t0 + �t) can be obtained by multiplying the mapping matrix �
with the initial concentration vector C0:

C1 = �C0. (3)

Note that concentration vector C represents the coarse-grained
description of volume fraction (dimensionless concentration) of a
marker fluid in a mixture of two marker fluids with identical mate-
rial properties, and its component Ci describes the concentration
(volume fraction) locally averaged in the cell ˝i. For n-times repet-
itive mixing (from z = z0 to z = z0 + n�z), the same operation is
repeated n times on the same mass and, hence, the concentration
evolution after n steps is given by Cn = �nC0. For sufficiently large
n, the matrix �n will not be sparse and it becomes that large that it
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