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Abstract

Empirical validation of building energy simulation programs is an important technique in examining the effectiveness and accuracies

of implemented algorithms. In recent years, daylighting algorithms incorporated in building energy simulation programs have become

increasingly sophisticated in their abilities to predict the illuminance, light power reductions, and the associated thermal load

interactions. The focus of this study was to examine measured and simulated light levels in an actual building constructed for research

purposes. Daylighting models were constructed in EnergyPlus and DOE-2.1E and the predicted illuminance and light power were

compared with measurements; an assessment of heating and cooling interactions using a variable-air-volume reheat (VAVRH) system

was also performed by analyzing reheat coil powers for the VAV boxes. The average differences from EnergyPlus for reference point

daylight illuminance, light power, and reheat coil power predictions were within 119.2%, 16.9%, and 17.3%, respectively. DOE-2.1E

predicted reference point daylight illuminances were within 114.1%, light powers were within 26.3%, and reheat coil power were within

25.4%.
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1. Introduction

During the last 30 years, engineers and architects have
increasingly relied on building energy simulation programs
to design and retrofit buildings. Increased computer
capacity has allowed for the implementation of complex
control algorithms used in modern structures to be
simulated by various programs. One such control strategy
is daylighting control. Daylighting controls take advantage
of daylight entering the space through windows, skylights
and/or light wells and adjust the amount of artificial light
to the space to control the light level at a given point.
Typically, a controller mounted in the ceiling measures the
illuminance on a reference plane. When the illuminance on

this reference plane deviates from a specified set point, the
controller sends feedback to dimmable ballasts which cause
the lights to dim or illuminate to maintain prescribed light
levels. Building energy simulation programs combine room
geometry and surface optical properties, window informa-
tion, and window shading (if installed) into the algorithms
to compute illuminance(s) at a reference point(s) in the
zones. This information, along with detailed lighting and
ballast specifications, is used to calculate the amount of
light dimming required to maintain a fixed illuminance.
Important and necessary components for evaluating

these types of programs are rigorous validations. Judkoff
[1] identifies three types of validations for building energy
simulation programs: analytical validations, program-to-
program comparisons, and empirical validations. In
analytical validations, the building energy simulation
programs are configured according to a case where the
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analytical solution is known. Program outputs are then
compared with the analytical solution. The advantages for
this type of validation include: no input uncertainties, an
absolute truth standard, and low costs; the primary
disadvantage is that analytical solutions are limited to
very simple cases. In program-to-program comparisons,
the same input specifications are used and the outputs from
each program are then compared. The advantages include:
relatively inexpensive and straightforward and the valida-
tions can be as complex as necessary. The disadvantage is
that there is no truth standard; so it is impossible to
ascertain which program (s), if any, is (are) correct. For
empirical validations, an actual experiment is run and then
modeled in building energy simulation programs. The
advantages are that there is an absolute truth standard
within experimental uncertainty limits, and it can be as
complex as required. The primary disadvantage is that
empirical validations are expensive to perform.

Numerous daylighting algorithms have been developed
and validated that explore different types of shading
devices and illuminance predictions [2–6]. The Interna-
tional Energy Agency’s Task 21 [7] was assembled to
investigating daylighting for design tools and software in
buildings. One of the most popular daylighting algorithms
used in the design of buildings [8] was installed in DOE-
2.1E and is analyzed in this paper.

Different facets of the DOE-2.1E daylighting algorithm
has been already explored in earlier studies, including
numerous empirical validations [9–13] and several studies
that use the program as a tool for optimizing the
daylighting performance of buildings [14–17]. Other
empirical validations that did not emphasize daylighting
have been performed in the PASSYS project [18–20], IEA
Annex 21/Task 8 [21], and IEA Task 34/Annex 43 [22–25]
that explore different facets of the building envelope and
the associated solar gains with and without solar shading
devices.

The focus of this research is to evaluate the daylighting
algorithms and connected load interactions in EnergyPlus
[26] and DOE-2.1E [27]. The experiment was performed in
test rooms in a research facility in conjunction with the
International Energy Agency’s Task 34/Annex 43 Subtask
C. For this study, various shading devices (internal and
external) and windows were installed in different combina-
tions to assess the performances of each building energy
simulation program. Various statistical parameters were
employed to compare the results. Experimental uncertain-
ties were computed and a Monte Carlo analysis (MCA)
was used to quantify how uncertainties in program input
parameters (thermophysical properties and instrumenta-
tion uncertainties) propagated through a building energy
simulation program (in this case EnergyPlus) and impacted
output predictions.

2. Facility layout

The building where the research was performed is
uniquely equipped for empirical validations and meets all
nine criteria for a high quality validation data set [19]. The
facility is located on the campus of a community college in
Ankeny, Iowa USA. The structure is comprised of eight
test rooms, a computer room, offices, two classrooms and
other rooms necessary for the support and operation of the
facility. A drawing of the building is shown in Fig. 1. The
test rooms were constructed in symmetrical pairs to
provide side-by-side testing with exposures to nearly
identical outside thermal loads. The volume and floor area
of the test rooms are 61.23m3 and 23.63m2, respectively.
Three pairs of test rooms are located at the perimeter of the
building (east, south, and west) and the other two test
rooms are situated inside the facility. There are three air-
handling units (AHUs) in the facility. Test rooms denoted
as A and B are served by different two nearly identical
AHUs; the other AHU serves the rest of the facility. The
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Nomenclature

Di difference between experiment and predicted
values for a given value

D mean difference for a given array
jDj mean absolute difference for a given array
Dmax maximum difference between experimental and

predicted values for a given array
Dmin minimum difference between experimental and

predicted values for a given array
Drms root mean squared difference between experi-

mental and predicted values for a given array
D95% 95th percentile of the differences between

experimental and predicted values for a given
array

N number of points in the array that were used for
the analysis

OUExperiment 95% credible limits or overall uncertainty
from experiment

OUEnergyPlus 95% credible limits or overall uncertainty
from MCA

OU average overall uncertainty calculated for 95%
credible limits

URi uncertainty ratio for a given hour, no units
UR average uncertainty ratio for a given array, no

unit
URmax maximum uncertainty ratio for a given array,

no units
URmin minimum uncertainty ratio for a given array,

no units
x̄ arithmetic mean for a given array
xmin minimum quantity for a given array
xmax maximum quantity for a given array
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