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a b s t r a c t

In this paper, a new approach is presented to perform multi-objective dynamic optimizations of novel
batch distillation utilizing an evolutionary algorithm. The contribution is divided into two major parts.
First, the development of an efficient hybrid evolutionary algorithm covering multi-objective mixed inte-
ger dynamic optimization problems is presented. The efficiency of the optimization solver is proven by
several complex test problems. Second, the application of the algorithm is shown by the optimization of
a middle vessel batch distillation. The challenging non-linear dynamic model, which takes the start-up
phase into account, is solved in Aspen Custom Modeler. It could be proven that the proposed evolution-
ary algorithm can be applied to complex mathematical problems. Likewise the algorithm was found to
successfully handle the optimization of middle a vessel batch distillation. The results show the feasibility
of the proposed methodology and a significant increase in profitability of the process.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For the task of separating low quantities of high value-added
products in specialty and fine chemistry novel batch distillation
columns have been proposed and investigated in the last decade, in
particular, the multi-vessel batch distillation (MBD), which can be
considered as a superstructure of all batch distillation configura-
tions. It consists of a reboiler, a total condenser, a distillate receiver,
N-1 thermally coupled column sections and N-2 intermediate ves-
sels where N indicates the number of separated fractions. From a
practical and theoretical point of view, it is generally recommended
to operate the column with infinite reboil and reflux ratio (Furlonge,
Pantelides, & Sørensen, 1999). The products are simultaneously col-
lected in associated vessels applying an appropriate process control
strategy, so that no off-cuts have to be reprocessed. A MBD with
one intermediate vessel, namely the middle vessel batch distilla-
tion (MVBD), which is focus of this contribution, is illustrated in
Fig. 1.

MBD and MVBD has been subject to many investigations,
whereas primarily process control strategies have been proposed
(Barolo, Guarise, Ribon, Rienzi, & Trotta, 1996; Hasebe, Kurooka,
& Hashimoto, 1995; Wittgens, Litto, Sørensen, & Skogestad, 1996).
Hasebe, Noda, and Hashimoto (1999) as well as Furlonge et al.
(1999) performed dynamic optimization studies with respect to
a minimum energy consumption. Low and Sørensen (2003, 2005)
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carried out single objective optimization (SOO) studies to optimize
process design and operating parameters of a MBD simultaneously.
However, the weighting of the single targets within the objective
function is always difficult to handle in the design phase of a pro-
cess. Moreover, the optimization results in one single solution on
which a decision has to be made. Using multi-objective optimiza-
tion (MOO), it would be possible to pick the best solution for an
actual problem considering non-mathematical decision variables.
Recently, Barakat, Fraga, and Sørensen (2006) presented results of
MOO studies applied to conventional batch distillation. To the best
of our knowledge, no publication deals with the MOO of multi-
vessel batch distillation. Thus, the aim of this contribution is to
optimize the dynamic process of a MVBD in terms of operation costs
while simultaneously consider investment costs.

A formulation of such kind of problem will lead to a
mixed integer non-linear programming (MINLP) problem. Dif-
ferent approaches can be found in the open literature to solve
MINLP problems, for example Branch and Bound methods or Outer
Approximation (Biegler & Grossmann, 2004; Floudas, Akrotirianakis,
Caratzoulas, Meyer, & Kallrath, 2005). Most of these established
methods are only able to handle one single objective function and
can only supply one solution each run. For these methods manage-
ment of multiple targets results in an a priori weighting of the single
objectives and formulation of a combined objective function that
will be solved. Such approach is called Weighted Sum Method and
is the simplest approach for solving MOO problems (Deb, 2004). To
obtain more then one solution weights have to be changed and opti-
mization have to be repeated several times. Although the method
is intuitive and easy to use it holds the risk not to be able to find
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Nomenclature

A surface area, refers to the heat transfer (m2)
C1 cost factors for consideration of installation, main-

tenance . . . (–)
C2 costs of packed column (D m−1)
C3 costs of total condenser (D )
C4 costs of falling film evaporator (D )
C5 costs for steam (D t−1)
cp heat capacity (J (kg K)−1)
CR crossover probability (–)
D diameter (m)
d Euclidean distance (–)
f objective function (–)
F scaling factor (–)
Fmax maximum possible fitness (–)
F′ reduced fitness (–)
FV vapor load (Pa0.5)
g inequality constraint (–)
Gmax maximum number of generations (–)
h dynamic process model (–)
H enthalpy (J)
h specific enthalpy (J kg−1)
HETP height equivalent to the theoretical plate (m)
HUmax maximum liquid hold-up (ml)
I individual
IC investment costs (D )
k overall heat transfer coefficient (W m−2 K−1)
K vapor–liquid equilibrium constant (–)
L liquid flow (kg h−1)
m mass (kg)
M dimension of genome (–)
n recovery period (a)
N number of fractions (–)
NPop population size (–)
Nth number of theoretical stages (–)
nc niche count (–)
OC operation costs (D )
p pressure (Pa)
P population (–)
Q heat duty (kW)
r randomly selected individual (–)
R reboil/reflux ratio (–)
S split ratio (–)
sh sharing function value (–)
t time (h)
T temperature (◦C)
TA annual production time (h a−1)
tB batch time (h)
tS set-up time (h)
ud design variables
uo operating variables
V vapor flow (kg h−1)
V Volume (m3)
w mass fraction (kg kg−1)
x gene/parameter
x liquid mass fraction (kg kg−1)
x state variables
ẋ- time-dependent state variables
y vapor mass fraction (kg kg−1)

Greek letters
�hV enthalpy of evaporation (kJ kg−1)
�share maximum considered distance (–)

� population size (–)
�(˝i) number of individuals in front i (–)
˝ non-constrain-dominated front (–)

Indices
B bottom
col column
cond condenser
D distillate
feed feed
i, j individual counter
init initial
internals internals
j tray counter
l lower bound
L liquid
loss loss
m gene counter
max maximum
min minimum
packings column packings
reb reboiler
shell shell
steam steam
stage stage
u upper bound
V vapor

Abbreviations
DE differential evolution
EA evolutionary algorithm
ES evolution strategy
GA genetic algorithm
MBD multi-vessel batch distillation
MDE modified differential evolution
MIDO mixed integer dynamic optimization
MINLP mixed integer non-linear programming
MOO multi-objective optimization
MVBD middle vessel batch distillation
ncsMDE non-constrain-dominated sorting modified differ-

ential evolution
NRV noisy random vector
NSGA non-dominated sorting genetic algorithm
PDE pareto-frontier differential evolution
rGA real-valued genetic algorithm
SOO single objective optimization
TV trial vector
VEGA vector evaluated GA

a well distributed front of optimal tradeoffs (pareto optimal front).
This is due to the fact that not all different weight vectors must
correspond to different solutions and that two very similar sets of
parameters may correspond to solutions in different regions regard-
ing objective space. As a side effect the computational complexity of
the weighted sum approach is quite high due to the large number of
optimization runs. The only promising method known to solve MOO
problems in one optimization run is to make use of stochastic opti-
mization algorithms, in particular, evolutionary algorithms (EA).
Many EAs can be found in the open literature, for example, the so-
called vector evaluated genetic algorithm (VEGA) (Schaffer, 1985),
the non-dominated sorting genetic algorithm (NSGA) (Srinivas &
Deb, 1994) or the pareto-frontier differential evolution algorithm
(PDE) (Abbass, Saker, & Newton, 2001). Yet no standard is available
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