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Abstract

Two approaches for optimal control of diffusion-convection-reaction processes based on reduced-order models are presented. The approaches
differ in the way spatial discretization is carried out to compute a reduced-order model suitable for controller design. In the first approach, the
partial differential equation (PDE) that describes the process is first discretized in space and time using the finite difference method to derive a
large number of recursive algebraic equations, which are written in the form of a discrete-time state-space model with sparse state, input and
output matrices. Snapshots based on this high-dimensional state-space model are generated to calculate empirical eigenfunctions using proper
orthogonal decomposition. The Galerkin projection with the computed empirical eigenfunctions as basis functions is then directly applied to
the high-dimensional state-space model to derive a reduced-order model. In the second approach, a continuous-time finite-dimensional state-
space model is constructed directly from the PDE through application of orthogonal collocation on finite elements in the spatial domain. The
dimension of the derived state-space model can be further reduced using standard model reduction techniques. In both cases, optimal controllers
are designed based on the low-order state-space models using discrete-time and continuous-time linear quadratic regulator (LQR) techniques. The
effectiveness of the proposed methods are illustrated through applications to a diffusion-convection process and a diffusion-convection-reaction

process.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Distributed chemical processes are naturally described
by partial differential equations (PDEs) that are able to
describe the spatiotemporal evolution of the process dynam-
ics. Representative examples include chemical vapor deposition
of semiconductor materials (Armaou & Christofides, 1999;
Li, Sopko, & McCamy, 2006; Lin & Adomaitis, 2001;
Theodoropoulou, Adomaitis, & Zafiriou, 1998), thermal spray
processing of coatings (Li & Christofides, 2005, 2006) and fluid
flows (Baker, Armaou, & Christofides, 2000; Graham, Peraire,
& Tang, 1999; Park & Jang, 2000; Rowley, Colonius, & Murray,
2004). In order to develop accurate numerical solutions, the
PDEs are usually converted to and solved as ordinary differ-
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ential equations (ODEs) or algebraic equations using numerical
methods like finite element and finite volume, etc. (e.g. Ammar,
Ryckelynck, Chinesta, & Keunings, 2006; Broussely, Bertin, &
Lagonotte, 2003; Kalkkuhl & Doring, 1993; Liu & Jacobsen,
2004). Generally speaking, the resulting state-space model is of
high dimension in order to precisely describe the spatial char-
acteristics, especially when sharp gradients exist in the spatial
domain. In order to develop dynamic optimization algorithms or
feedback control systems suitable for real-time implementation,
advanced model reduction techniques such as Galerkin projec-
tion with empirical eigenfunctions, combination of Galerkin’s
method with approximate inertial manifolds, Krylov subspace
and balanced truncation have been proposed to derive low-
order ODEs with reasonable accuracy (Armaou & Christofides,
1999, 2000, 2002; Baker & Christofides, 2000; Baker et al.,
2000; Bendersky & Christofides, 2000; Christofides, 2001;
Christofides & Daoutidis, 1997; Park & Jang, 2000; Rowley
et al., 2004; Shvartsman & Kevrekidis, 1998). The controller is
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then designed based on the reduced-order models, resulting in a
significant reduction in the time needed to compute the control
action.

In this work, we will present two optimal control approaches
for diffusion-convection-reaction processes using reduced-order
models. In the first approach, the finite difference method is
initially used and the PDE is converted to a large number of
recursive algebraic equations. These algebraic equations are
written in the form of discrete-time state-space models with
sparse state, input and output matrices. Subsequently, snapshots
based on the high-dimensional state-space model are generated
to calculate empirical eigenfunctions using proper orthogo-
nal decomposition. The Galerkin projection with the empirical
eigenfunctions as basis functions is then directly applied to
the high-dimensional state-space model to derive a low-order
discrete-time state-space model. In the second approach, the
finite-element based orthogonal collocation is used. In this case,
a number of high-order Lagrange interpolation polynomials
are applied on a finite number of collocation elements in the
spatial domain to directly derive a low-dimensional differential-
algebraic equation (DAE) model (Quarteroni & Valli, 1997).
Such a DAE can be converted to a continuous-time state-space
model by incorporating the boundary conditions into the ODEs
in the spatial domain. If necessary and the properties of the
resulting ODE system allow, the dimension of the derived state-
space model can be further reduced using model reduction
techniques based on time-scale decomposition arguments. In
either case, the optimal control laws are designed based on the
low-dimensional state-space models or their linearized forms
using discrete-time or continuous-time linear quadratic regulator
(LQR) control techniques.

The proposed methods are applied to two concentration tran-
sition problems in an isothermal dispersed tubular reactor. The
concentration transition problem is an important subject at the
interface of reactor engineering and process control. This type
of problem arises in modern chemical plants which generally
make various products that differ in composition only in order
to satisfy the needs of different customers. Representative indus-
trial examples include grade transition in a polyethylene plant
(e.g. Cervantes, Tonelli, Brandolin, Bandoni, & Biegler, 2002;
Lo & Ray, 2006; McAuley & MacGregor, 1992) and colored
glass product transition in a glass plant (e.g. Trier, 1987). In
certain circumstances, a product transition may take days or
weeks if the reactor is huge and the residence time of the reac-
tor is large. A reduction of the transition time, which can be
solved as an optimal control problem, can bring about signifi-
cant economic benefits (Li & Christofides, 2007). In this work,
we will focus on a type of concentration transition problem in
which the grade of the final product is regulated through the con-
centration of a key component that is fed at the entrance of the
reactor, e.g. the transition of one colored glass product to another
by regulating the colorant agent (key component) in the batch
material which is then incorporated in the glass melt before exit-
ing (Trier, 1987). If the key component to be controlled is not
involved in any reactions, the transition process is described as
a diffusion-convection process. If it does participate in any reac-
tion, the process is a diffusion-convection-reaction process. In

the remainder, we first focus on a diffusion-convection process
and design an optimal controller on the basis of a reduced-order
model constructed through Galerkin projection with empirical
eigenfunctions as basis functions. Subsequently, we focus on
a diffusion-convection-reaction process and design an optimal
controller on the basis of a reduced-order model constructed
through orthogonal collocation.

2. Optimal control of diffusion-convection processes
2.1. Control problem formulation

In this section, we focus on an isothermal dispersed tubular
reactor in which the key component concentration is described
by a parabolic PDE subject to the so-called Danckwerts bound-
ary conditions (Danckwerts, 1953):
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where U(0™, 1) = u(t) is the inlet concentration (input variable),
U(L, t) = y(¢) is the outlet concentration (output variable), ¢ is
the time, v is the fluid velocity in the reactor, L is the length of
the reactor and D is the diffusion coefficient (or, more generally,
dispersion coefficient). The control problem is to minimize the
following functional:
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subject to the process dynamics described in Eq. (1), where u ¢
and y are the steady-state concentration of the key component
at the inlet and outlet of the reactor after transition, and € rep-
resents the weight on the control action during the transition
process. Due to the linear nature of the process and the fact that
all the molecules fed to the process will eventually flow out, the
concentration transition problem can be converted to a dimen-
sionless form in which the dimensionless concentration before
and after transition is 0 and 1, respectively (Li & Christofides,
2007).

2.2. Spatial and temporal discretization of the PDE model

We first employ a standard finite difference discretization
of the PDE of Eq. (1) in both time and space to obtain an
accurate solution. Specifically, using the explicit finite differ-
ence approach with the forward time and center space (FTCS)
scheme, the PDE of Eq. (1) can be written as the following set
of algebraic equations:
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