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a b s t r a c t

Geogenic radon prone areas are regions in which for natural reasons elevated indoor radon concentra-
tions must be expected. Their identification is part of radon mitigation policies in many countries, as
radon is acknowledged a major indoor air pollutant, being the second cause of lung cancer after smoking.
Defining and estimating radon prone areas is therefore of high practical interest.

In this paper a method is presented which uses the geogenic radon potential as predictor and
thresholds of indoor radon concentration for defining radon prone areas, from which thresholds for the
geogenic radon potential are deduced which decide whether a location is flagged radon prone or not, in
the absence of actual indoor observations.

The overall results are different maps of radon prone areas, derived from the geogenic radon map, and
depending (1) on the criterion which defines what a radon prone area is; and (2) on the choice of score
whose maximization defines the optimal classifier. Such map is not the result of a transfer model
(geogenic to indoor radon), but of the optimization of a classification rule. The method is computationally
simple but has its caveats and statistical traps, some of which are also addressed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The basic concept of geogenic radon prone area (RPA) is a re-
gion where for natural, i.e. geogenic reasons elevated indoor radon
(Rn) levels or an elevated probability of their occurrence must be
expected. Geogenic factors are high radium concentrations in rock
and soil, high permeability due to the coarse texture of the ground
or due to fracturing of rocks, hydrological peculiarities and others.
Knowing RPAs can assist allocating resources more efficiently for
denser surveys, remediation of affected houses and regional
implementation of stricter building codes for new houses. There-
fore considerable work is being invested into methods of esti-
mating such regions from observed data of geogenic quantities
and/or indoor Rn measurements.

Although RPA as understood here is, by its very concept, a
geogenic entity independent of anthropogenic factors, such as
house type or living habits, its quantification e that is, decision
whether a certain location is flagged RPA or not e should be linked
to quantities related to Rn risk. The latter is often quantified
through a proxy, namely the probability that indoor Rn concen-
tration exceeds a threshold. (More precisely the chance of lung
cancer depends on exposure to Rn progenies which is however
more difficult to measure, and which is substituted by the average
Rn concentration, or an exceedance probability.) Since indoor Rn

concentration is to a high degree controlled by anthropogenic
factors, the practically defined RPA also contains these factors,
contrary to its concept. One tries to reduce the influence of these
factors by standardizing the indoor Rn values used for “calibration”
of what is a RPA, e.g. by restricting to ground floor rooms in houses
with basement (to be applied in this study), by recalculating indoor
values to standard conditions (Austrian approach; Friedmann,
2005), or to restricting to ground floor rooms in single-family
houses which have not been remediated with respect to Rn
(Belgian approach, Cinelli et al., 2011; B. Dehandschutter, personal
comm.).

Several methods for defining RPAs in practice have been pro-
posed. As spatial supports administrative or geological units or grid
cells are common. Criteria to flag them as RPA include exceedance
of mean indoor concentrations, or high probabilities that indoor Rn
concentration thresholds are exceeded, or geological units which
are known for high Rn potential (the geogenic property which leads
to high indoor concentration in houses which allow Rn infiltration),
etc. Quantities known to be related to indoor Rn, such as soil Rn (as
in this article), geochemistry or dose rate may substitute indoor Rn
for assessing RPAs.

In this article a binary classification based on ROC (receiver
operating characteristic) curve analysis is proposed. It establishes
an optimal classification of the predictor (radon potential) by
optimizing the number of cells that have been classified correctly
according to a target criterion, related to indoor Rn concentration.
The optimum is defined by a score derived from the ROC statistic.E-mail addresses: pbossew@bfs.de, peter.bossew@reflex.at.
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2. Materials and methods

2.1. Data

In Germany the following data are available currently (2013): a
set of about 4000 measurements of Rn concentration in soil air
together with soil permeability; about 40,000 measurements of
indoor Rn concentrations, ca. 15,000 of which in ground floor
rooms of houses with basement; and geology on 1:1 M resolution,
or finer. The soil Rn sampling points are reasonably distributed over
most of the territory, though being strongly clustered in certain
regions. The indoor samples originate from various, mainly unco-
ordinated surveys. They are highly clustered and their representa-
tiveness is questionable in some cases. Some regions are very
poorly covered. It is therefore difficult to derive estimates of RPAs
directly from indoor Rn data, although of course they give an
indication about which regions are affected.

The idea is therefore to use the geogenic quantities e geology as
a categorical variable with area support and soil Rn as a continuous
one with point support e as predictors and indoor Rn as “calibra-
tion” data. Based on these geogenic data one should be able to
decide whether a location e in practice an area, either a grid cell or
a geological polygon e is labelled RPA or not, given a certain defi-
nition of RPA.

2.2. The radon potential

From the geogenic data a radon potential (RP) is defined and a
RPmap of Germany created. The RP definition follows a proposal by
Neznal et al. (2004):

RP : ¼ CðsoilÞ=ð � 10logðkÞ � 10Þ;

with C(soil) is the Rn concentration in soil determined by the
“Kemski protocol” (Kemski et al., 2002) in kBq/m3 and k, the
permeability (same protocol) in m2. The RP is essentially, for me-
dium permeability, proportional to the advective flux component
normalized to the pressure gradient across an interface (e.g. ground
e house). For very high and low permeability the RP is smoothed
against this quantity.

The RP is mapped for Germany on a 10 km � 10 km grid by a
method described in Bossew (2013a,b); put shortly, geological
classes are used as deterministic predictors on top of which cell
estimation is performed by conditional (to the point values of RP)
simulation. This yields cell-wise statistics of the RP (the local ccdf,
or conditional cumulative distribution function), from which sta-
tistics such as the expectation or confidence intervals and ex-
ceedance probabilities can be derived. An alternative would be
ordinary kriging which would however not allow estimating local
distributions. (Other, more complicated varieties of kriging would.)

Whereas 3506 cells of area 10 km � 10 km are available which
contain a value of the RP, covering the whole of Germany
(357,121 km2) with a few exceptions, the numbers of cells which
contain a minimum number of indoor data is much smaller, as a
result of their strong spatial clustering. While 1428 cells with at
least one observation are available, only 407 are for at least 10, and
126 cells have at least 30 observations.

2.3. Classification by ROC analysis

The classification of cells x* containing estimates RP(x*) is per-
formed as follows.

(1) In those cells where enough indoor Rn data C are available,
calculate empirical statistics of C, such as arithmetical or

geometrical mean or the empirical probability to exceed a
threshold, e.g. prob(C > 100 Bq/m3) ¼ number of C > 100
divided by total number of samples in the cell.

(2) Establish a criterion CRIT for a cell to be labelled RPA, such as:
E[C]> 100 Bq/m3; or: E[prob(C> 100 Bq/m3)]> 10%, where E
denotes the expectation.

(3) For each cell x* decide whether the criterion is met for the
empirical estimates. This results in a binary coding of the
cells, positive/negative, or {1,0}.

(4) For a given value rp of the quantity RP, decide for each cell x*,
whether RP(x*) � rp or RP(x*) < rp. This results in another
binary coding of the cells.

(5) Next, the two codings or classifications are compared, and
the value rp0 which classifies RP(x*) such that the coinci-
dence becomes optimal, is determined. To this end one cal-
culates the following statistics:
� True positives, TP: number of cells classified or “predicted”
as RPA through RP and through C;

� False positives, FP: number of cells classified as RPA though
RP, but not through C;

� True negatives, TN: number of cells classified as non-RPA
through both RP and C;

� False negatives, FN, number of cells classified a non-RPA
through RP, although they are RPA as classified by C. The
logic is summarized in Fig. 1.

(6) Evidently, TP þ FP þ TN þ FN ¼ total number of cells. From
these numbers several statistics can be derived, in particular:
� True positive rate, or “sensitivity”, also “recall”:

TPR : ¼ TP=ðobserved positivesÞ ¼ TP=ðTPþ FNÞ;
and

� False positive rate, or 1-“specificity”:

FPR : ¼ FP=ðobserved negativesÞ ¼ FP=ðFPþ TNÞ

TPR shall be as high, while FPR as lowas possible; they cannot be
chosen independently, however. Therefore one has to find a trade-
off considered optimal, after some score.

(7) Plotting TPR against FPR results in a graph called ROC, or
receiver operating characteristic, an example of which (for
the data discussed here) is shown in Fig. 2. The shape of the
ROC graph depends on the chosen criterion CRIT; points of
the graph correspond to values of the threshold rp for clas-
sification according to the RP. By tuning the value rp the
classification can be optimized such as to minimize mis-
classifications (essentially by false positives or negatives),
yielding an optimum, rp0. The diagonal indicates a random
association between the classifications, whereas a perfect
classification would be a point at (0,1).

(8) Several scores derived from the ROC have been proposed
whose optimization lead to an optimal classifier rp0. The
corresponding point on the curve can be considered the best

predicted
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value of rp.

observed
classification, 
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Fig. 1. Classification table and definition of true and false positives and negatives (TP,
FP, TN, FN).
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