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On Green’s function methods to solve nonlinear reaction–diffusion systems
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Abstract

Recent studies have shown that the usage of classical discretization techniques (e.g., orthogonal collocation, finite-differences, etc.) for
reaction–diffusion models cannot be stable in a wide range of parameter values as required, for instance, in model parameter estimation. Ori-
ented to reduce the adverse effects of numerical differentiation, integral equation formulations based on Green’s function methods have been
considered, in the chemical engineering fields. In this paper, a further exploration of this approach for nonlinear reaction–diffusion transport is
carried out. To this end, the Green’s function problem is presented and solved for three geometries (i.e., rectangular, cylindrical and spherical), and
three representative examples are worked out to illustrate the ability of the method to describe accurately the phenomena with respect to analytical
and numerical solutions via finite-differences. Our results show that: (i) by avoiding numerical differentiation, the round-off error propagation is
significantly reduced, (ii) boundary conditions are exactly incorporated without approximation order reduction and (iii) more accurate calculations
are performed making use of less mesh points and computer time.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern computer-based process design, optimization and
control methodologies can require massive on-line solution of
detailed, commonly distributed-parameter models. For instance,
optimization of chemical reactors with selectivity criteria
requires the solution of the reaction-transport (diffusion and con-
vection) model for catalytic pellet and/or reactor scales. At each
step of the optimization cycle the underlying reaction-transport
model must be solved numerically by means of stable and
robust schemes. Finite-differences and finite-elements schemes
are widely used given the existence of both theoretical results
on stability and computational techniques for implementation.
In this way, it is apparent that the development of stable pro-
cedures for massive solution of distributed-parameter models
seems to be a solved issue. Recent studies have shown that
the usage of classical discretization techniques (e.g., orthogo-
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nal collocation, finite-differences, etc.) for reaction–diffusion
models cannot be stable in a wide range of parameter values as
required, for instance, in model parameter estimation (Agrawal,
Rangaiah, Ray, & Gupta, 2006; Asteasuain, Tonelli, Brandolin,
& Bandoni, 2001). The main source of instability is the lower
order approximations for boundary conditions compared to the
higher-order used in the domain. Hence, the development of sta-
ble and robust numerical procedures for distributed parameter
processes is still of prime importance within advanced process
design and optimization methodologies.

Inaccuracies in the numerical solution of distributed parame-
ter models are induced by inaccurate approximations for spatial
derivatives of any order. From signal processing practice it is
known that differentiators are, in fact, highly sensitive to round-
off errors. Differentiation schemes are very likely to magnify
the propagation of approximation errors and, hence, to reduce
the accuracy of numerical solutions. Generally, this drawback
is compensated by the usage of refined meshes. Since differen-
tial operators are analytically inverted within a Green’s function
formulation for distributed parameter processes, integral equa-
tion formulations for distributed parameter processes become a
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serious alternative to avoid the usage of approximate differen-
tiators. In this approach, the differential equation is converted
into an integral, Fredholm-type, equation where boundary condi-
tions are incorporated exactly. As is known in signal processing
and process control theories, integrators are welcome because of
their ability to wash-out and smooth round-off errors. In this way,
integral equation formulations offer the advantage that approx-
imations for differentiators have no longer to be considered,
and potential numerical schemes could depend on numerical
quadratures, that are unconditionally stable.

The application of Green’s functions for solving
reaction–diffusion processes in chemical engineering can
be traced back to Amundson and Schilson (1961), who obtained
the Green’s function for isothermal linear reaction in a sphere,
and solved the resulting linear Fredholm integral equation via
a successive approximation technique. Kesten (1969) applied
Green’s function analysis to obtain concentration profiles for
ammonia decomposition in a spherical catalytic pellet. Dixit and
Tavlarides (1982) were the first to use Newton iteration schemes
to solve nonlinear Fredholm equations arising from reaction
in a sphere, and applied their results to the Fischer-Tropsch
synthesis. Subsequently, Mukkavilli, Tavlarides, & Wittmann
(1987a, 1987b) presented and solved numerically an integral
equation formulation for reaction in a finite cylinder with
Dirichlet and Robin-type boundary conditions. They solved
the underlying Green’s function differential equation by means
of eigenfunction expansions. Recently, Onyejekwe (1995,
1996, 2002) used integral equation formulation to propose
a Green element solution for nonlinear reaction–diffusion
equations. In that work, the main idea was to invert the diffusion
operator, via Green’s functions, to subsequently obtain a set
of nonlinear (algebraic) equations from a suitable spatial
discretization. Extensive numerical simulations showed the
stability and accuracy of the proposed method compared to
standard finite-difference schemes.

Maybe due to the boom of finite-differences and finite-
element methods, the application of Green’s function theory
for solving nonlinear reaction-transport process has been
rarely explored. However, as mentioned earlier, integral equa-
tion formulations offer interesting implementation advantages,
including exact incorporation of boundary conditions and
enhanced stability in the face of round-off errors. In this paper,
a further exploration of integral equation formulation for non-
linear reaction–diffusion transport is carried out. To this end,
the Green’s function problem is posed and solved for three
geometries (i.e., rectangular, cylindrical and spherical), and
three representative examples are worked out to illustrate the
ability of the method to describe accurately the phenomenae
with respect to analytical and numerical solutions via finite-
differences.

2. Reaction–diffusion model

Following the classical formulation described by Aris (1975),
which assumes a homogeneous porous pellet and using effec-
tive transport coefficients, the steady state concentration and

temperature profiles for a single chemical reaction are given by

∇2
my = φ2R(y, θ) (1)

and

∇2
mθ = −βφ2R(y, θ) (2)

where the one-dimensional operator ∇2
m is given by

∇2
m = 1

xm

d

dx

(
xm

d

dx

)
(3)

x = x′/lm is the dimensionless spatial coordinate, y and θ are
dimensionless concentration and temperature, respectively. In
addition, φ is the Thiele modulus, and β is the Prater number.
The corresponding boundary conditions are

y(1) = 1 and
dy(0)

dx
= 0 (4)

for concentration, and for temperature

θ(1) = 1 and
dθ(0)

dx
= 0 (5)

Notice that the external surface is located at x = 1. Following
Prater (1958), the dimensionality of this system can be reduced
as follows. Leta = βy + θ. From Eqs. (1) and (2), it is possible to
obtain the differential equation ∇2

ma = 0, whose solution under
the corresponding boundary conditions is a(x) = β + 1, for all
x∈ [0, 1]. This implies that the dimensionless concentration and
temperature are related by

θ(x) = 1 + β(1 − y(x)) (6)

This relationship can be used in Eq. (1) to obtain a differential
equation depending only on concentration:

∇2
my = Q(y) (7)

where the term in the r.h.s. of the above equation is given by

Q(y) = φ2R(y, 1 + β(1 − y)) (8)

In this form, the reduced boundary-value problem is given
by the differential Eq. (7) together with the boundary condi-
tions (4). Once the concentration field y(x) has been computed,
the temperature field θ(x) is computed from Eq. (6). Which
states that the solutions of the reaction-diffusion system lies
on the solutions manifoldΣ = {(y(x), θ(x)) : θ(x) = 1 + β(1 −
y(x)), for all x∈ [0, 1]}. The reduced model given by Eqs. (4)
and (7) describes the reaction and diffusion phenomena in a
catalytic pellet. If the reaction rate R′(C, T ) is linear, the cor-
responding model is also linear and an analytical solution can
be found by means of well-established methods. However, if
the reaction rate R′(C, T ) is nonlinear, the model (7) is nonlin-
ear and its solution would, in most cases, require some kind of
approximation.

3. Integral equation formulation

The reaction–diffusion model described in the above section
is represented as a differential equation. In this section, following
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