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Abstract

In the framework of process optimization, the use of measurements to compensate the effect of uncertainty has become an active area of research.
One of the ideas therein is to enforce optimality by tracking the necessary conditions of optimality (NCO tracking). Most techniques assume that
the set of active constraints remains the same even in the presence of uncertainty and disturbances. Consequently, changes in the active set are
difficult to handle. In this paper, this assumption on active set tracking is relaxed by using a logarithmic-linear barrier-penalty function. This way,
none of the constraints is active and no assumption regarding the active set is required. Optimization with this barrier-penalty function is shown
to have the same convergence properties as optimization with the standard barrier function while, at the same time, avoiding a separate logic
to guarantee feasibility. Thus, the adaptation can be more aggressive and lead to better performance. The gradient of the augmented objective
function is computed using finite perturbations and forced to zero with PI-type controllers. The approach is illustrated in simulation via the static
optimization of an isothermal continuous stirred-tank reactor.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Measurement-based optimization has gained popularity in
recent years as it uses measurements to compensate the effect
of uncertainty – in the form of both model mismatch and pro-
cess disturbances – occurring at the time of implementation
(Abel & Marquardt, 1998; Eaton & Rawlings, 1990; Ruppen,
Benthack, & Bonvin, 1995). Among the many techniques that
are available for this purpose, the method that tracks the nec-
essary conditions of optimality (NCO) shows promise since
it adapts the inputs directly, i.e. without having to update a
process model and re-optimize the process (Clarke-Pringle &
MacGregor, 1998; Srinivasan, Bonvin, Visser, & Palanki, 2003;
Srinivasan, Palanki, & Bonvin, 2003).

The NCO contain two parts: (i) the active constraints and
(ii) the sensitivities, i.e. the reduced gradients of the objective
function with respect to the manipulated variables. The NCO-
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tracking method enforces the active constraints and pushes the
sensitivities to zero. This can be done for static optimization
(François, Srinivasan, & Bonvin, 2002, 2005) as well as for
dynamic optimization (Srinivasan et al., 2003a, 2003b). Alter-
nate methods have been proposed that push the sensitivities in
static optimization problems to zero, e.g. the self-optimizing
control approach (Skogestad, 2000), where outputs that are
nearly invariant to uncertainty are chosen for tracking. How-
ever, these methods do not work if the set of postulated active
constraints is incorrect due to model mismatch or process dis-
turbances. For example, if the set of active constraints changes,
the NCO-tracking scheme will keep the “old” set of active
constraints active, which obviously is no longer optimal. This
problem can be especially serious if the active set is nonunique.

There has been a recent surge of interest in extremum-
seeking (Kristic & Wang, 2000) and adaptive extremum-seeking
(DeHaan & Guay, 2004a, 2004b; Zang, Guay, & Dochain, 2001)
techniques that force the sensitivities to zero. The concept of
barrier function is typically used to eliminate the presence of
active constraints. As a result, the NCO include only sensi-
tivities, i.e. the gradient of the augmented objective function
with respect to the decision variables. Though an important
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issue – the need to define the active constraint set – can be
sorted out with this barrier-function approach, the problem
has in fact been made more difficult to solve, since forcing
sensitivities to zero is typically more difficult to implement
than keeping given constraints active. Also, the key point is
that the process outputs are required to remain in the strict
interior of the feasible region, since the barrier function is
undefined otherwise. This features requires special care, which
restricts the extremum-seeking control scheme to convex con-
straints.

The idea used in this paper is to eliminate the concept of
active constraints by using a barrier-penalty function. The rea-
son for this new formulation is that a barrier function must be
evaluated in the strict interior of the feasible region since it
is undefined at active constraints and infeasible points. Hence,
separate logic for adjusting the step size is necessary to main-
tain feasibility. In contrast, the proposed barrier-penalty function
allows us to address a more general class of problems since it
does not need to remain in the strict interior of the feasibil-
ity region. This is an important advantage for soft constrained
formulations where violations are inevitable due to noisy out-
puts. Moreover, the form of the barrier-penalty function allows
considering nonconvex inequality constraints as well.

It is well known that exact penalty function approaches
have difficulties with convergence due to discontinuity of
the derivatives. In this paper, we deal with this difficulty
through a smoothing approach and develop a logarithmic-linear
barrier–penalty function that guarantees continuous derivatives
and automatically pushes the solution back to the feasible region.

The paper is organized as follows. Section 2 formulates
the optimization problem and introduces the concepts of NCO
tracking, barrier and exact penalty functions. The features of a
combined barrier-penalty function are discussed in Section 3,
and its suitability for NCO tracking is investigated in Section
4. The proposed methodology is illustrated in simulation on a
CSTR example in Section 5, and Section 6 concludes the paper.

2. Optimization problem formulation

The static optimization problem considered in this paper can
be formulated in reduced form as follows:

min
u

φ(u) (1)

such that

S(u) ≤ 0 (2)

where φ is the smooth scalar cost function to be minimized, u
the nu-dimensional vector of inputs, and S is the ns-dimensional
vector of inequality constraints. We assume that the inputs
are mapped smoothly into the outputs, the objective and the
constraint functions. A sufficient condition for this is that
the (eliminated) state and output equations, f (x, u) = 0, y =
g(x, u), which map the manipulated variables to the state and
output variables form a smooth injective mapping. As a result,
we assume that the matrix ∂f (x, u)/∂x is nonsingular for all x
and u.

The NCOs for problems (1) and (2) read:

∂φ

∂u
+ μT ∂S

∂u
= 0 (3)

μTS = 0, S ≤ 0, μ ≥ 0 (4)

where μ are the ns-dimensional Lagrange multipliers for the
constraints. Let us introduce the following standard assump-
tions:

Assumption 1. Optimization problem (1) and (2) has a solution
that satisfies the NCO (3) and (4). Let A be the set of active
constraints, i.e. A = {j|Sj(u∗) = 0}. In addition, at the solution
(u∗, μ∗), we assume:

• The gradients of the active constraints are linearly indepen-
dent, which implies that μ∗ are bounded and unique.

• μ∗ are strictly complementary, i.e. μ∗
jSj(u

∗) = 0 implies
μ∗
j − Sj(u∗) > 0 ∀j. This property is needed for regularity

of the Karush-Kuhn-Tucker system.
• The second-order sufficient conditions are satisfied, i.e.

(∂2φ(u∗)/∂u2) + ∑
jμ

∗
j (∂

2Sj(u∗)/∂u2) is positive definite in
all allowable directions p such that (∂Sj/∂u)p = 0,∀j ∈A.

2.1. Optimization via NCO tracking

Measurement-based optimization via NCO tracking enforces
the necessary conditions of optimality (3) and (4) using mea-
surements. As shown in François et al. (2002, 2005), one first
determines the set of active constraints S̄. The inputs are then
partitioned into (i) the constraint-seeking inputs ū and (ii) the
sensitivity-seeking inputs ũ. The ũ correspond to input directions
that have no influence on the active constraints, i.e. ∂S̄/∂ũ = 0,
and ū are orthogonal to ũ. Hence, the NCO can be written
as:

S̄ = 0 (5)

∂φ

∂ũ
= 0 (6)

∂φ

∂ū
+ μT ∂S̄

∂ū
= 0 (7)

Condition (5) indicates that the active constraints should be
kept active in the presence of perturbation using the constraint-
seeking inputs ū. Condition (6) deals with the adaptation of ũ to
push the sensitivities to zero. Note that ∂φ/∂ũ corresponds to the
reduced gradient of φ. Condition (7) is less important since it is
only there to determine the Lagrange multipliers μ, which are
not needed in the NCO-tracking scheme. The main assumption
for this NCO-tracking scheme to work is that the set of active
constraints is known a priori for the real process and does not
change with perturbations.

We note that partitioning the inputs into these two sets is not
always straightforward, especially as the active set of constraints
changes. In the next section, we see that the barrier-penalty
approach eliminates the need for this partitioning.
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